Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7868): 521-525, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34290425

RESUMEN

Whereas ferromagnets have been known and used for millennia, antiferromagnets were only discovered in the 1930s1. At large scale, because of the absence of global magnetization, antiferromagnets may seem to behave like any non-magnetic material. At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, this internal structure leads to the possibility that the property known as the Berry phase can acquire distinct spatial textures2,3. Here we study this possibility in an antiferromagnetic axion insulator-even-layered, two-dimensional MnBi2Te4-in which spatial degrees of freedom correspond to different layers. We observe a type of Hall effect-the layer Hall effect-in which electrons from the top and bottom layers spontaneously deflect in opposite directions. Specifically, under zero electric field, even-layered MnBi2Te4 shows no anomalous Hall effect. However, applying an electric field leads to the emergence of a large, layer-polarized anomalous Hall effect of about 0.5e2/h (where e is the electron charge and h is Planck's constant). This layer Hall effect uncovers an unusual layer-locked Berry curvature, which serves to characterize the axion insulator state. Moreover, we find that the layer-locked Berry curvature can be manipulated by the axion field formed from the dot product of the electric and magnetic field vectors. Our results offer new pathways to detect and manipulate the internal spatial structure of fully compensated topological antiferromagnets4-9. The layer-locked Berry curvature represents a first step towards spatial engineering of the Berry phase through effects such as layer-specific moiré potential.

2.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38011109

RESUMEN

The time-varying brain activity may parallel the disease progression of cerebral glioma. Assessment of brain dynamics would better characterize the pathological profile of glioma and the relevant functional remodeling. This study aims to investigate the dynamic properties of functional networks based on sliding-window approach for patients with left frontal glioma. The generalized functional plasticity due to glioma was characterized by reduced dynamic amplitude of low-frequency fluctuation of somatosensory networks, reduced dynamic functional connectivity between homotopic regions mainly involving dorsal attention network and subcortical nuclei, and enhanced subcortical dynamic functional connectivity. Malignancy-specific functional remodeling featured a chaotic modification of dynamic amplitude of low-frequency fluctuation and dynamic functional connectivity for low-grade gliomas, and attenuated dynamic functional connectivity of the intrahemispheric cortico-subcortical connections and reduced dynamic amplitude of low-frequency fluctuation of the bilateral caudate for high-grade gliomas. Network dynamic activity was clustered into four distinct configuration states. The occurrence and dwell time of the weakly connected state were reduced in patients' brains. Support vector machine model combined with predictive dynamic features achieved an averaged accuracy of 87.9% in distinguishing low- and high-grade gliomas. In conclusion, dynamic network properties are highly predictive of the malignant grade of gliomas, thus could serve as new biomarkers for disease characterization.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Imagen por Resonancia Magnética , Encéfalo , Glioma/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Mapeo Encefálico
3.
J Am Chem Soc ; 146(21): 14427-14432, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717106

RESUMEN

Here we report the first and concise total synthesis of a complex ophiobolin-derived sesterterpene, bipolarolide D, which hinges on two strategic applications of pentafulvene: (1) enantioselective pentafulvene-involved [6+2] cycloaddition; (2) regioselective and diastereoselective pentafulvene-involved Heck cyclization. Late-stage selective allylic addition to the ketone moiety facilitates the successful installation of the side chain. This strategy enabled the accomplishment of its first enantioselective total synthesis through a modular approach. This synthesis will facilitate the investigation of relevant biological activities and provide a synthetic blueprint for utilizing fulvenes as versatile synthons in other complex natural product synthesis.

4.
J Am Chem Soc ; 146(5): 3396-3404, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266485

RESUMEN

Covalent organic frameworks (COFs), with the features of flexible structure regulation and easy introduction of functional groups, have aroused broad interest in the field of photocatalysis. However, due to the low light absorption intensity, low photoelectron conversion efficiency, and lack of suitable active sites, it remains a great challenge to achieve efficient photocatalytic aerobic oxidation reactions. Herein, based on reticular chemistry, we rationally designed a series of three-motif molecular junction type COFs, which formed dual photosensitizer coupled redox molecular junctions containing multifunctional COF photocatalysts. Significantly, due to the strong light adsorption ability of dual photosensitizer units and integrated oxidation and reduction features, the PY-BT COF exhibited the highest activity for photocatalytic aerobic oxidation. Especially, it achieved a photocatalytic benzylamine conversion efficiency of 99.9% in 2.5 h, which is much higher than that of the two-motif molecular junctions with only one photosensitizer or redox unit lacking COFs. The mechanism of selective aerobic oxidation was studied through comprehensive experiments and density functional theory calculations. The results showed that the photoinduced electron transfer occurred from PY and then through triphenylamine to BT. Furthermore, the thermodynamics energy for benzylamine oxidation on PY-BT COF was much lower than that for others, which confirmed the synergistic effect of dual photosensitizer coupled redox molecular junction COFs. This work provided a new strategy for the design of functional COFs with three-motif molecular junctions and also represented a new insight into the multifunctional COFs for organic catalytic reactions.

5.
Nat Mater ; 22(5): 583-590, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894774

RESUMEN

Using circularly polarized light to control quantum matter is a highly intriguing topic in physics, chemistry and biology. Previous studies have demonstrated helicity-dependent optical control of chirality and magnetization, with important implications in asymmetric synthesis in chemistry; homochirality in biomolecules; and ferromagnetic spintronics. We report the surprising observation of helicity-dependent optical control of fully compensated antiferromagnetic order in two-dimensional even-layered MnBi2Te4, a topological axion insulator with neither chirality nor magnetization. To understand this control, we study an antiferromagnetic circular dichroism, which appears only in reflection but is absent in transmission. We show that the optical control and circular dichroism both arise from the optical axion electrodynamics. Our axion induction provides the possibility to optically control a family of [Formula: see text]-symmetric antiferromagnets ([Formula: see text], inversion; [Formula: see text], time-reversal) such as Cr2O3, even-layered CrI3 and possibly the pseudo-gap state in cuprates. In MnBi2Te4, this further opens the door for optical writing of a dissipationless circuit formed by topological edge states.

6.
J Neurooncol ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874844

RESUMEN

PURPOSE: To evaluate the performance of multi-pool Chemical exchange saturation transfer (CEST) MRI in prediction of glioma grade, isocitrate dehydrogenase (IDH) mutation, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss and Ki-67 labeling index (LI), based on the fifth edition of the World Health Organization classification of central nervous system tumors (WHO CNS5). METHODS: 95 patients with adult-type diffuse gliomas were analyzed. The amide, direct water saturation (DS), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer (MT) and amine signals were derived using Lorentzian fitting, and asymmetry-based amide proton transfer-weighted (APTwasym) signal was calculated. The mean value of tumor region was measured and intergroup differences were estimated using student-t test. The receiver operating curve (ROC) and area under the curve (AUC) analysis were used to evaluate the diagnostic performance of signals and their combinations. Spearman correlation analysis was performed to evaluate tumor proliferation. RESULTS: The amide and DS signals were significantly higher in high-grade gliomas compared to low-grade gliomas, as well as in IDH-wildtype gliomas compared to IDH-mutant gliomas (all p < 0.001). The DS, MT and amine signals showed significantly differences between ATRX loss and retention in grade 2/3 IDH-mutant gliomas (all p < 0.05). The combination of signals showed the highest AUC in prediction of grade (0.857), IDH mutation (0.814) and ATRX loss (0.769). Additionally, the amide and DS signals were positively correlated with Ki-67 LI (both p < 0.001). CONCLUSION: Multi-pool CEST MRI demonstrated good potential to predict glioma grade, IDH mutation, ATRX loss and Ki-67 LI.

7.
J Appl Toxicol ; 44(3): 428-444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37837293

RESUMEN

Bisphenol AF (BPAF), as one of structural analogs of BPA, has been increasingly used in recent years. However, limited studies have suggested its adverse effects similar to or higher than BPA. In order to explore the general toxicity and genotoxicity of subacute exposure to BPAF, the novel 28-day multi-endpoint (Pig-a assay + micronucleus [MN] test + comet assay) genotoxicity evaluation platform was applied. Male rats were randomly distributed into seven main experimental groups and four satellite groups. The main experimental groups included BPAF-treated groups (0.5, 5, and 50 µg/kg·bw/d), BPA group (10 µg/kg·bw/d), two solvent control groups (PBS and 0.1% ethanol/99.9% oil), and one positive control group (N-ethyl-N-nitrosourea, 40 mg/kg bw). The satellite groups included BPAF high-dose recovery group (BPAF-HR), oil recovery group (oil-R), ENU recovery group (ENU-R), and PBS recovery group (PBS-R). All groups received the agents orally via gavage for 28 consecutive days, and satellite groups were given a recovery period of 35 days. Among all histopathologically examined organs, testis and epididymis damage was noticed, which was further manifested as blood-testis barrier (BTB) junction protein (Connexin 43 and Occludin) destruction. BPAF can induce micronucleus production and DNA damage, but the genotoxic injury can be repaired after the recovery period. The expression of DNA repair gene OGG1 was downregulated by BPAF. To summarize, under the design of this experiment, male reproductive toxicity of BPAF was noticed, which is similar to that of BPA, but its ability to induce micronucleus production may be stronger than that of BPA.


Asunto(s)
Compuestos de Bencidrilo , Fluorocarburos , Testículo , Ratas , Animales , Masculino , Compuestos de Bencidrilo/toxicidad , Daño del ADN , Reproducción
8.
Food Microbiol ; 120: 104449, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431336

RESUMEN

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Asunto(s)
Burkholderia gladioli , Oryza , Ácido Bongcréquico/análisis , Aceite de Soja/análisis , Almidón , Contaminación de Alimentos/análisis , Harina/análisis
9.
Ecotoxicol Environ Saf ; 273: 116125, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394755

RESUMEN

2-Methylfuran (2-MF) is an important member of the furan family generated during food thermal processing. An in-vivo multiple endpoint genotoxicity assessment system was applied to explore the genotoxic mode of action and threshold of 2-MF. Male Sprague-Dawley rats received 2-MF by oral gavage at doses of 0.16, 0.625, 2.5, and 10 mg/kg.bw/day for 120 days. An additional 15 days were granted for recovery. The Pig-a gene mutation frequency of RET and RBC showed significant increases among the 2-MF groups on day 120. After a 15-day recovery period, the Pig-a gene mutation frequency returned to levels similar to those in the vehicle control. The tail intensity (TI) values of peripheral blood cells at a dose of 10 mg/kg.bw/day significantly increased from day 4 and remained at a high level after the recovery period. No statistical difference was found in the micronucleus frequency of peripheral blood between any 2-MF dose group and the corn oil group at any timepoint. 2-MF may not induce the production of micronuclei, but it could cause DNA breakage. It could not be ruled out that 2-MF may accumulate in vivo and cause gene mutations. Hence, DNA, other than the spindle, may be directly targeted. The mode of action of 2-MF may be that it was metabolized by EPHX1 to more DNA-active metabolites, thus leading to oxidative and direct DNA damage. The point of departure (PoD) of 2-MF-induced genotoxicity was derived as 0.506 mg/kg bw/day.


Asunto(s)
Daño del ADN , Reticulocitos , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Pruebas de Micronúcleos , Reticulocitos/metabolismo , Furanos/toxicidad , Furanos/metabolismo , ADN/metabolismo , Pruebas de Mutagenicidad
10.
J Am Chem Soc ; 145(50): 27718-27727, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38083846

RESUMEN

The intrinsic fragility and insoluble nature of covalent organic frameworks (COFs) have strongly impeded their processability for practical applications. Herein, an aqueous-based sol-gel synthetic strategy is reported for the synthesis and shaping of COFs with task-specific applications that satisfy the principles of green chemistry for gram-scale production of crystalline materials. Our successful approach involves three pivotal aspects: the "prodrug mimic" design of water-soluble monomers, the utilization of hydrolyzable bonds, and the manipulation of reaction kinetics. The generality of the method is demonstrated by the successful preparation of representative high-surface area two-dimensional (2D) COFs with several commonly used amines. By virtue of this strategy, a COF colloidal dispersion is achieved and can be formulated into processable fluids, structured films, and COF monoliths. Remarkably, the obtained lightweight (∼0.020 g cm-3) and robust aerogels displayed outstanding adsorption capacity (exceeding 57 times its own weight) toward a variety of organic solvents and exhibited superior thermal insulating properties compared to the widely used sponge and cotton. This work demonstrates a versatile strategy for the synthesis and shaping of processable COF materials in water that will contribute to the development of COF monoliths for advanced applications.

11.
BMC Med ; 21(1): 261, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468885

RESUMEN

BACKGROUND: Previous studies have found a correlation between coronavirus disease 2019 (COVID-19) and changes in brain structure and cognitive function, but it remains unclear whether COVID-19 causes brain structural changes and which specific brain regions are affected. Herein, we conducted a Mendelian randomization (MR) study to investigate this causal relationship and to identify specific brain regions vulnerable to COVID-19. METHODS: Genome-wide association study (GWAS) data for COVID-19 phenotypes (28,900 COVID-19 cases and 3,251,161 controls) were selected as exposures, and GWAS data for brain structural traits (cortical thickness and surface area from 51,665 participants and volume of subcortical structures from 30,717 participants) were selected as outcomes. Inverse-variance weighted method was used as the main estimate method. The weighted median, MR-Egger, MR-PRESSO global test, and Cochran's Q statistic were used to detect heterogeneity and pleiotropy. RESULTS: The genetically predicted COVID-19 infection phenotype was nominally associated with reduced cortical thickness in the caudal middle frontal gyrus (ß = - 0.0044, p = 0.0412). The hospitalized COVID-19 phenotype was nominally associated with reduced cortical thickness in the lateral orbitofrontal gyrus (ß = - 0.0049, p = 0.0328) and rostral middle frontal gyrus (ß = - 0.0022, p = 0.0032) as well as with reduced cortical surface area of the middle temporal gyrus (ß = - 10.8855, p = 0.0266). These causal relationships were also identified in the severe COVID-19 phenotype. Additionally, the severe COVID-19 phenotype was nominally associated with reduced cortical thickness in the cuneus (ß = - 0.0024, p = 0.0168); reduced cortical surface area of the pericalcarine (ß = - 2.6628, p = 0.0492), superior parietal gyrus (ß = - 5.6310, p = 0.0408), and parahippocampal gyrus (ß = - 0.1473, p = 0.0297); and reduced volume in the hippocampus (ß = - 15.9130, p = 0.0024). CONCLUSIONS: Our study indicates a suggestively significant association between genetic predisposition to COVID-19 and atrophy in specific functional regions of the human brain. Patients with COVID-19 and cognitive impairment should be actively managed to alleviate neurocognitive symptoms and minimize long-term effects.


Asunto(s)
COVID-19 , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Encéfalo/diagnóstico por imagen , Cognición
12.
Opt Express ; 31(20): 33608-33621, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859138

RESUMEN

A novel compact on-chip Fourier transform (FT) spectrometer has been proposed based on the silicon-on-insulator (SOI) platform with wide operating bandwidth and high resolution. The spectrometer consists of a 16-channel power splitter and a Mach-Zehnder interferometer (MZI) array of 16 MZIs with linearly increasing optical path length (OPL) difference. We have also developed a spectral retrieval algorithm based on the pattern-coupled sparse Bayesian learning (PCSBL) algorithm and artificial neural network (ANN). The experimental results show that the designed spectrometer has a flat transmission characteristic in the wavelength range between 1500 nm and 1600 nm, indicating that the device has a wide operating bandwidth of 100 nm. In addition, with the assistance of the spectral retrieval algorithm, our spectrometer has the ability to reconstruct narrowband signals with full width at half maximum (FWHM) of 0.5 nm and a triple-peaked signal separated by a 3-nm distance.

13.
Opt Express ; 31(2): 3325-3335, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785328

RESUMEN

We report the demonstration of a germanium waveguide p-i-n photodetector (PD) for the C + L band light detection. Tensile strain is transferred into the germanium layer using a SiN stressor on top surface of the germanium. The simulation and experimental results show that the trenches must be formed around the device, so that the strain can be transferred effectively. The device exhibits an almost flat responsivity with respect to the wavelength range from 1510 nm to 1630 nm, and high responsivity of over 1.1 A/W is achieved at 1625 nm. The frequency response measurement reveals that a high 3 dB bandwidth (f3dB) of over 50 GHz can be obtained. The realization of the photonic-integrated circuits (PIC)-integrable waveguide Ge PDs paves the way for future telecom applications in the C + L band.

14.
Diabetes Obes Metab ; 25(3): 675-687, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321466

RESUMEN

AIM: To develop a personalized nomogram and risk score to predict the 5-year risk of diabetes among Chinese adults with prediabetes. METHODS: There were 26 018 participants with prediabetes at baseline in this retrospective cohort study. We randomly stratified participants into two cohorts for training (n = 12 947) and validation (n = 13 071). The least absolute shrinkage and selection operator (LASSO) model was applied to select the most significant variables among candidate variables. And we further established a stepwise Cox proportional hazards model to screen out the risk factors based on the predictors chosen by the LASSO model. We presented the model with a nomogram. The model's discrimination, clinical use and calibration were assessed using the area under the receiver operating characteristic (ROC) curve, decision curve and calibration analysis. The associated risk factors were also categorized according to clinical cut-points or tertials to create the diabetes risk score model. Based on the total score, we divided it into four risk categories: low, middle, high and extremely high. We also evaluated our diabetes risk score model's performance. RESULTS: We developed a simple nomogram and risk score that predicts the risk of prediabetes by using the variables age, triglyceride, fasting blood glucose, body mass index, alanine aminotransferase, high-density lipoprotein cholesterol and family history of diabetes. The area under the ROC curve of the nomogram was 0.8146 (95% CI 0.8035-0.8258) and 0.8147 (95% CI 0.8035-0.8259) for the training and validation cohort, respectively. The calibration curve showed a perfect fit between predicted and observed diabetes risks at 5 years. Decision curve analysis presented the clinical use of the nomogram, and there was a wide range of alternative threshold probability spectrums. A total risk score of 0 to 2.5, 3 to 4.5, 5 to 7.5 and 8 to 13.5 is associated with low, middle, high and extremely high diabetes risk status, respectively. CONCLUSIONS: We developed and validated a personalized prediction nomogram and risk score for 5-year diabetes risk among Chinese adults with prediabetes, identifying individuals at a high risk of developing diabetes. Doctors and other healthcare professionals can easily and quickly use our diabetes score model to assess the diabetes risk status in patients with prediabetes. In addition, the nomogram model and risk score we developed need to be validated in a prospective cohort study.


Asunto(s)
Diabetes Mellitus , Estado Prediabético , Humanos , Adulto , Estado Prediabético/diagnóstico , Estado Prediabético/epidemiología , Pueblos del Este de Asia , Nomogramas , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo
15.
Microb Cell Fact ; 22(1): 56, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964553

RESUMEN

BACKGROUND: L­Fucose is a rare sugar that has beneficial biological activities, and its industrial production is mainly achieved with brown algae through acidic/enzymatic fucoidan hydrolysis and a cumbersome purification process. Fucoidan is synthesized through the condensation of a key substance, guanosine 5'­diphosphate (GDP)­L­fucose. Therefore, a more direct approach for biomanufacturing L­fucose could be the enzymatic degradation of GDP­L­fucose. However, no native enzyme is known to efficiently catalyze this reaction. Therefore, it would be a feasible solution to engineering an enzyme with similar function to hydrolyze GDP­L­fucose. RESULTS: Herein, we constructed a de novo L­fucose synthetic route in Bacillus subtilis by introducing heterologous GDP­L­fucose synthesis pathway and engineering GDP­mannose mannosyl hydrolase (WcaH). WcaH displays a high binding affinity but low catalytic activity for GDP­L­fucose, therefore, a substrate simulation­based structural analysis of the catalytic center was employed for the rational design and mutagenesis of selected positions on WcaH to enhance its GDP­L­fucose­splitting efficiency. Enzyme mutants were evaluated in vivo by inserting them into an artificial metabolic pathway that enabled B. subtilis to yield L­fucose. WcaHR36Y/N38R was found to produce 1.6 g/L L­fucose during shake­flask growth, which was 67.3% higher than that achieved by wild­type WcaH. The accumulated L­fucose concentration in a 5 L bioreactor reached 6.4 g/L. CONCLUSIONS: In this study, we established a novel microbial engineering platform for the fermentation production of L­fucose. Additionally, we found an efficient GDP­mannose mannosyl hydrolase mutant for L­fucose biosynthesis that directly hydrolyzes GDP­L­fucose. The engineered strain system established in this study is expected to provide new solutions for L­fucose or its high value­added derivatives production.


Asunto(s)
Hidrolasas , Manosa , Hidrolasas/metabolismo , Manosa/metabolismo , Fucosa/metabolismo , Bacillus subtilis/genética , Reactores Biológicos , Fermentación , Ingeniería Metabólica
16.
BMC Neurol ; 23(1): 355, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37794369

RESUMEN

BACKGROUND: Limited data exist regarding preoperative serum sodium (Na) and 30-day mortality in adult patients with tumor craniotomy. Therefore, this study investigates their relationship. METHODS: A secondary retrospective analysis was performed using data from the ACS NSQIP database (2012-2015). The principal exposure was preoperative Na. The outcome measure was 30-day postoperative mortality. Binary logistic regression modeling was conducted to explore the link between them, and a generalized additive model and smooth curve fitting were applied to evaluate the potential association and its explicit curve shape. We also conducted sensitivity analyses and subgroup analyses. RESULTS: A total of 17,844 patients (47.59% male) were included in our analysis. The mean preoperative Na was 138.63 ± 3.23 mmol/L. The 30-day mortality was 2.54% (455/17,844). After adjusting for covariates, we found that preoperative Na was negative associated with 30-day mortality. (OR = 0.967, 95% CI:0.941, 0.994). For patients with Na ≤ 140, each increase Na was related to a 7.1% decreased 30-day mortality (OR = 0.929, 95% CI:0.898, 0.961); for cases with Na > 140, each increased Na unit was related to a 8.8% increase 30-day mortality (OR = 1.088, 95% CI:1.019, 1.162). The sensitivity analysis and subgroup analysis indicated that the results were robust. CONCLUSIONS: This study shows a positive and nonlinear association between preoperative Na and postoperative 30-day mortality in adult patients with tumor craniotomy. Appropriate preoperative Na management and maintenance of serum Na near the inflection point (140) may reduce 30-day mortality.


Asunto(s)
Neoplasias , Complicaciones Posoperatorias , Humanos , Adulto , Masculino , Femenino , Estudios Retrospectivos , Craneotomía/métodos , Sodio , Factores de Riesgo
17.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37349950

RESUMEN

AIMS: Clostridium butyricum has been recognized as a strong candidate for the "next generation of probiotics" due to its beneficial roles on humans. Owing to our current understanding of this species is limited, it is imperative to unveil the genetic variety and biological properties of C. butyricum on sufficient strains. METHODS AND RESULTS: We isolated 53 C. butyricum strains and collected 25 publicly available genomes to comprehensively assess the genomic and phenotypic diversity of this species. Average nucleotide identity and phylogeny suggested that multiple C. butyricum strains might share the same niche. Clostridium butyricum genomes were replete with prophage elements, but the CRISPR-positive strain efficiently inhibited prophage integration. Clostridium butyricum utilizes cellulose, alginate, and soluble starch universally, and shows general resistance to aminoglycoside antibiotics. CONCLUSIONS: Clostridium butyricum exhibited a broad genetic diversity from the extraordinarily open pan-genome, extremely convergent core genome, and ubiquitous prophages. In carbohydrate utilization and antibiotic resistance, partial genotypes have a certain guiding significance for phenotypes.


Asunto(s)
Clostridium butyricum , Humanos , Clostridium butyricum/genética , Profagos/genética , Filogenia , Farmacorresistencia Microbiana/genética , Carbohidratos
18.
Environ Res ; 216(Pt 4): 114651, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334829

RESUMEN

The abuse of antibiotics poses a threat to the ecological environment and biological health, and how to effectively reduce the residue of tetracycline (TC) in the environment has attracted much attention. In this study, three types of pristine biochar (BCs: PBC300, PBC500, and PBC700) were prepared using agricultural waste shiitake mushroom bran at different pyrolysis temperatures to remove TC from water. The structure and surface chemistry of the adsorbents were characterized using different analytical techniques such as scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. These changes in physicochemical properties improve the adsorption capacity of BC. The PBC300 and PBC500 conform to the Langmuir isothermal adsorption model, while the PBC700 is more compatible with the Freundlich model. According to the fitting results of the Langmuir isotherm model, the maximum saturated adsorption capacities of PBC300, PBC500 and PBC700 for TC were 7.568 mg/g, 14.994 mg/g and 17.684 mg/g, respectively. The correlation coefficients of the pseudo-second-order kinetic models were 0.9882, 0.9882 and 0.9996, respectively, which could well fit the adsorption process of TC by the three BCs, indicating that chemical adsorption was dominant. With the help of machine learning, the relationship between the physicochemical properties of BC and the adsorption capacity of TC was effectively explored. The random forest model was able to fit the adsorption process of BC on TC better. It is expected that this study will guide the rational application of BC in the treatment of TC wastewater.


Asunto(s)
Hongos Shiitake , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Tetraciclina , Antibacterianos
19.
Proc Natl Acad Sci U S A ; 117(27): 15517-15523, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32554603

RESUMEN

Topological electrons in semimetals are usually vulnerable to chemical doping and environment change, which restricts their potential application in future electronic devices. In this paper, we report that the type-II Dirac semimetal [Formula: see text] hosts exceptional, robust topological electrons which can tolerate extreme change of chemical composition. The Dirac electrons remain intact, even after a substantial part of V atoms have been replaced in the [Formula: see text] solid solutions. This Dirac semimetal state ends at [Formula: see text], where a Lifshitz transition to p-type trivial metal occurs. The V-Al bond is completely broken in this transition as long as the bonding orbitals are fully depopulated by the holes donated from Ti substitution. In other words, the Dirac electrons in [Formula: see text] are protected by the V-Al bond, whose molecular orbital is their bonding gravity center. Our understanding on the interrelations among electron count, chemical bond, and electronic properties in topological semimetals suggests a rational approach to search robust, chemical-bond-protected topological materials.

20.
Psychiatry Clin Neurosci ; 77(10): 541-549, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37350640

RESUMEN

AIMS: Hikikomori is a common phenomenon reported in Japan and many other countries. However, the broad trends of the research publications on hikikomori are unclear. Therefore, this study examined the patterns of research on hikikomori using bibliometric analysis. METHODS: Relevant publications were searched in Web of Science. Bibliometric analyses were performed with CiteSpace, R and VOSviewer. RESULTS: In total, 297 publications on hikikomori met the eligibility criteria. The International Journal of Social Psychiatry (IF = 10.461) published the most papers (K = 17, or 5.7%) on hikikomori. Takahiro A. Kato from Kyushu University (41; 13.8%; H-index = 18) was the most influential author, while Takahiro A. Kato (total link strength [TLS]: 235), Alan R. Teo (TLS: 157), and Masaru Tateno (TLS: 153) separately had the strongest research collaboration with other researchers. Of all countries that published on hikikomori, Japan had the highest number of publications (K = 91). The keywords "United States" and "psychiatric diagnosis" received the most attention between 2013 and 2015, whereas "health" and "autism spectrum disorder" received the most attention in 2021 and 2022. CONCLUSIONS: Peer-reviewed research publications on hikikomori are growing rapidly and the research trends in this field are also changing.


Asunto(s)
Trastorno del Espectro Autista , Fobia Social , Humanos , Bibliometría , Japón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA