Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33242418

RESUMEN

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Asunto(s)
Citotoxicidad Inmunológica , Inmunoterapia , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Serpinas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Granzimas/metabolismo , Inmunidad/efectos de los fármacos , Melanoma/patología , Ratones Endogámicos C57BL , Neoplasias/prevención & control , Bibliotecas de Moléculas Pequeñas/farmacología , Células del Estroma/efectos de los fármacos , Células del Estroma/patología , Microambiente Tumoral/efectos de los fármacos
2.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244254

RESUMEN

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Asunto(s)
NADP Transhidrogenasas , Neoplasias , Humanos , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Nature ; 619(7968): 73-77, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316660

RESUMEN

High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials1-3. However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications4,5. Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24-1.97 Å) and melting points (303-3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission-fusion behaviour during the alloying process.

4.
Proc Natl Acad Sci U S A ; 121(27): e2315944121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917002

RESUMEN

Chronic inflammation is epidemiologically linked to the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC). However, our understanding of the molecular mechanisms controlling gut inflammation remains insufficient, hindering the development of targeted therapies for IBD and CRC. In this study, we uncovered C15ORF48/miR-147 as a negative regulator of gut inflammation, operating through the modulation of epithelial cell metabolism. C15ORF48/miR-147 encodes two molecular products, C15ORF48 protein and miR-147-3p microRNA, which are predominantly expressed in the intestinal epithelium. C15ORF48/miR-147 ablation leads to gut dysbiosis and exacerbates chemically induced colitis in mice. C15ORF48 and miR-147-3p work together to suppress colonocyte metabolism and inflammation by silencing NDUFA4, a subunit of mitochondrial complex IV (CIV). Interestingly, the C15ORF48 protein, a structural paralog of NDUFA4, contains a unique C-terminal α-helical domain crucial for displacing NDUFA4 from CIV and its subsequent degradation. NDUFA4 silencing hinders NF-κB signaling activation and consequently attenuates inflammatory responses. Collectively, our findings have established the C15ORF48/miR-147-NDUFA4 molecular axis as an indispensable regulator of gut homeostasis, bridging mitochondrial metabolism and inflammation.


Asunto(s)
Metabolismo Energético , Microbioma Gastrointestinal , Inflamación , MicroARNs , Animales , Humanos , Ratones , Colitis/metabolismo , Colitis/microbiología , Colitis/genética , Colitis/inducido químicamente , Disbiosis/metabolismo , Disbiosis/microbiología , Metabolismo Energético/genética , Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Transducción de Señal
5.
Circ Res ; 134(2): 165-185, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38166463

RESUMEN

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Eferocitosis , Factor 6 Asociado a Receptor de TNF/metabolismo , Aterosclerosis/metabolismo , Inflamación/genética , Ratones Noqueados , Fenotipo , Apolipoproteínas E , Factores Reguladores del Interferón/genética , Ratones Endogámicos C57BL
6.
Mol Cell ; 72(1): 71-83.e7, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220561

RESUMEN

Cancer cells entail metabolic adaptation and microenvironmental remodeling to survive and progress. Both calcium (Ca2+) flux and Ca2+-dependent signaling play a crucial role in this process, although the underlying mechanism has yet to be elucidated. Through RNA screening, we identified one long noncoding RNA (lncRNA) named CamK-A (lncRNA for calcium-dependent kinase activation) in tumorigenesis. CamK-A is highly expressed in multiple human cancers and involved in cancer microenvironment remodeling via activation of Ca2+-triggered signaling. Mechanistically, CamK-A activates Ca2+/calmodulin-dependent kinase PNCK, which in turn phosphorylates IκBα and triggers calcium-dependent nuclear factor κB (NF-κB) activation. This regulation results in the tumor microenvironment remodeling, including macrophage recruitment, angiogenesis, and tumor progression. Notably, our human-patient-derived xenograft (PDX) model studies demonstrate that targeting CamK-A robustly impaired cancer development. Clinically, CamK-A expression coordinates with the activation of CaMK-NF-κB axis, and its high expression indicates poor patient survival rate, suggesting its role as a potential biomarker and therapeutic target.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Señalización del Calcio/genética , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/metabolismo , Macrófagos/patología , FN-kappa B/genética , Neoplasias/patología , Fosforilación , Transducción de Señal/genética , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Proc Natl Acad Sci U S A ; 120(31): e2303448120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487081

RESUMEN

Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.


Asunto(s)
Núcleo Celular , Chaperón BiP del Retículo Endoplásmico , Humanos , Carcinogénesis , Movimiento Celular , Transformación Celular Neoplásica
8.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36528388

RESUMEN

Membrane-based cells are the fundamental structural and functional units of organisms, while evidences demonstrate that liquid-liquid phase separation (LLPS) is associated with the formation of membraneless organelles, such as P-bodies, nucleoli and stress granules. Many studies have been undertaken to explore the functions of protein phase separation (PS), but these studies lacked an effective tool to identify the sequence segments that critical for LLPS. In this study, we presented a novel software called dSCOPE (http://dscope.omicsbio.info) to predict the PS-driving regions. To develop the predictor, we curated experimentally identified sequence segments that can drive LLPS from published literature. Then sliding sequence window based physiological, biochemical, structural and coding features were integrated by random forest algorithm to perform prediction. Through rigorous evaluation, dSCOPE was demonstrated to achieve satisfactory performance. Furthermore, large-scale analysis of human proteome based on dSCOPE showed that the predicted PS-driving regions enriched various protein post-translational modifications and cancer mutations, and the proteins which contain predicted PS-driving regions enriched critical cellular signaling pathways. Taken together, dSCOPE precisely predicted the protein sequence segments critical for LLPS, with various helpful information visualized in the webserver to facilitate LLPS-related research.


Asunto(s)
Proteínas , Programas Informáticos , Humanos , Proteínas/química
9.
Nucleic Acids Res ; 51(D1): D479-D487, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36165955

RESUMEN

Post-translational modifications (PTMs) are critical molecular mechanisms that regulate protein functions temporally and spatially in various organisms. Since most PTMs are dynamically regulated, quantifying PTM events under different states is crucial for understanding biological processes and diseases. With the rapid development of high-throughput proteomics technologies, massive quantitative PTM proteome datasets have been generated. Thus, a comprehensive one-stop data resource for surfing big data will benefit the community. Here, we updated our previous phosphorylation dynamics database qPhos to the qPTM (http://qptm.omicsbio.info). In qPTM, 11 482 553 quantification events among six types of PTMs, including phosphorylation, acetylation, glycosylation, methylation, SUMOylation and ubiquitylation in four different organisms were collected and integrated, and the matched proteome datasets were included if available. The raw mass spectrometry based false discovery rate control and the recurrences of identifications among datasets were integrated into a scoring system to assess the reliability of the PTM sites. Browse and search functions were improved to facilitate users in swiftly and accurately acquiring specific information. The results page was revised with more abundant annotations, and time-course dynamics data were visualized in trend lines. We expected the qPTM database to be a much more powerful and comprehensive data repository for the PTM research community.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Animales , Humanos , Ratones , Ratas , Fosforilación , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Bases de Datos Genéticas
10.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739431

RESUMEN

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Asunto(s)
Biosíntesis de Proteínas , Serina-ARNt Ligasa , Humanos , Codón sin Sentido , Codón de Terminación , ARN Mensajero/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-ARNt Ligasa/genética
11.
Nano Lett ; 24(4): 1130-1136, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252698

RESUMEN

Due to the coupled contributions of adhesion and carrier to friction typically found in previous research, decoupling the electron-based dissipation is a long-standing challenge in tribology. In this study, by designing and integrating a graphene/h-BN/graphene/h-BN stacking device into an atomic force microscopy, the carrier density dependent frictional behavior of a single-asperity sliding on graphene is unambiguously revealed by applying an external back-gate voltage, while maintaining the adhesion unaffected. Our experiments reveal that friction on the graphene increases monotonically with the increase of carrier density. By adjusting the back-gate voltage, the carrier density of the top graphene layer can be tuned from -3.9 × 1012 to 3.5 × 1012 cm-2, resulting in a ∼28% increase in friction. The mechanism is uncovered from the consistent dependence of the charge density redistribution and sliding barrier on the carrier density. These findings offer new perspectives on the fundamental understanding and regulation of friction at van der Waals interfaces.

12.
J Lipid Res ; 65(2): 100499, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218337

RESUMEN

Ferroptosis is a novel cell death mechanism that is mediated by iron-dependent lipid peroxidation. It may be involved in atherosclerosis development. Products of phospholipid oxidation play a key role in atherosclerosis. 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) is a phospholipid oxidation product present in atherosclerotic lesions. It remains unclear whether PGPC causes atherosclerosis by inducing endothelial cell ferroptosis. In this study, human umbilical vein endothelial cells (HUVECs) were treated with PGPC. Intracellular levels of ferrous iron, lipid peroxidation, superoxide anions (O2•-), and glutathione were detected, and expression of fatty acid binding protein-3 (FABP3), glutathione peroxidase 4 (GPX4), and CD36 were measured. Additionally, the mitochondrial membrane potential (MMP) was determined. Aortas from C57BL6 mice were isolated for vasodilation testing. Results showed that PGPC increased ferrous iron levels, the production of lipid peroxidation and O2•-, and FABP3 expression. However, PGPC inhibited the expression of GPX4 and glutathione production and destroyed normal MMP. These effects were also blocked by ferrostatin-1, an inhibitor of ferroptosis. FABP3 silencing significantly reversed the effect of PGPC. Furthermore, PGPC stimulated CD36 expression. Conversely, CD36 silencing reversed the effects of PGPC, including PGPC-induced FABP3 expression. Importantly, E06, a direct inhibitor of the oxidized 1-palmitoyl-2-arachidonoyl-phosphatidylcholine IgM natural antibody, inhibited the effects of PGPC. Finally, PGPC impaired endothelium-dependent vasodilation, ferrostatin-1 or FABP3 inhibitors inhibited this impairment. Our data demonstrate that PGPC impairs endothelial function by inducing endothelial cell ferroptosis through the CD36 receptor to increase FABP3 expression. Our findings provide new insights into the mechanisms of atherosclerosis and a therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Animales , Ratones , Humanos , Fosfolípidos , Fosforilcolina , Éteres Fosfolípidos/metabolismo , Éteres Fosfolípidos/farmacología , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Endotelio/metabolismo , Glutatión/metabolismo , Hierro/metabolismo , Proteína 3 de Unión a Ácidos Grasos
13.
J Biol Chem ; 299(8): 104958, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380083

RESUMEN

Nitrogen (N) is an essential element for microbial growth and metabolism. The growth and reproduction of microorganisms in more than 75% of areas of the ocean are limited by N. Prochlorococcus is numerically the most abundant photosynthetic organism on the planet. Urea is an important and efficient N source for Prochlorococcus. However, how Prochlorococcus recognizes and absorbs urea still remains unclear. Prochlorococcus marinus MIT 9313, a typical Cyanobacteria, contains an ABC-type transporter, UrtABCDE, which may account for the transport of urea. Here, we heterologously expressed and purified UrtA, the substrate-binding protein of UrtABCDE, detected its binding affinity toward urea, and further determined the crystal structure of the UrtA/urea complex. Molecular dynamics simulations indicated that UrtA can alternate between "open" and "closed" states for urea binding. Based on structural and biochemical analyses, the molecular mechanism for urea recognition and binding was proposed. When a urea molecule is bound, UrtA undergoes a state change from open to closed surrounding the urea molecule, and the urea molecule is further stabilized by the hydrogen bonds supported by the conserved residues around it. Moreover, bioinformatics analysis showed that ABC-type urea transporters are widespread in bacteria and probably share similar urea recognition and binding mechanisms as UrtA from P. marinus MIT 9313. Our study provides a better understanding of urea absorption and utilization in marine bacteria.


Asunto(s)
Prochlorococcus , Agua de Mar , Transportadoras de Casetes de Unión a ATP/metabolismo , Prochlorococcus/metabolismo , Urea/metabolismo , Agua de Mar/microbiología
14.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858208

RESUMEN

Finding personalized biomarkers for disease prediction of patients with cancer remains a massive challenge in precision medicine. Most methods focus on one subnetwork or module as a network biomarker; however, this ignores the early warning capabilities of other modules with different configurations of biomarkers (i.e. multi-modal personalized biomarkers). Identifying such modules would not only predict disease but also provide effective therapeutic drug target information for individual patients. To solve this problem, we developed a novel model (denoted multi-modal personalized dynamic network biomarkers (MMPDNB)) based on a multi-modal optimization mechanism and personalized dynamic network biomarker (PDNB) theory, which can provide multiple modules of personalized biomarkers and unveil their multi-modal properties. Using the genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, we validated the effectiveness of the MMPDNB model. The experimental results showed that compared with other advanced methods, MMPDNB can more effectively predict the critical state with the highest early warning signal score during cancer development. Furthermore, MMPDNB more significantly identified PDNBs containing driver and biomarker genes specific to cancer tissues. More importantly, we validated the biological significance of multi-modal PDNBs, which could provide effective drug targets of individual patients as well as markers for predicting early warning signals of the critical disease state. In conclusion, multi-modal optimization is an effective method to identify PDNBs and offers a new perspective for understanding tumor heterogeneity in cancer precision medicine.


Asunto(s)
Genómica , Neoplasias Pulmonares , Biomarcadores , Genómica/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Medicina de Precisión/métodos
15.
J Transl Med ; 22(1): 613, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956649

RESUMEN

BACKGROUND: CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy stands out as a revolutionary intervention, exhibiting remarkable remission rates in patients with refractory/relapsed (R/R) B-cell malignancies. However, the potential side effects of therapy, particularly cytokine release syndrome (CRS) and infections, pose significant challenges due to their overlapping clinical features. Promptly distinguishing between CRS and infection post CD19 target CAR-T cell infusion (CTI) remains a clinical dilemma. Our study aimed to analyze the incidence of infections and identify key indicators for early infection detection in febrile patients within 30 days post-CTI for B-cell malignancies. METHODS: In this retrospective cohort study, a cohort of 104 consecutive patients with R/R B-cell malignancies who underwent CAR-T therapy was reviewed. Clinical data including age, gender, CRS, ICANS, treatment history, infection incidence, and treatment responses were collected. Serum biomarkers procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were analyzed using chemiluminescent assays. Statistical analyses employed Pearson's Chi-square test, t-test, Mann-Whitney U-test, Kaplan-Meier survival analysis, Cox proportional hazards regression model, Spearman rank correlation, and receiver operating characteristic (ROC) curve analysis to evaluate diagnostic accuracy and develop predictive models through multivariate logistic regression. RESULTS: In this study, 38 patients (36.5%) experienced infections (30 bacterial, 5 fungal, and 3 viral) within the first 30 days of CAR T-cell infusion. In general, bacterial, fungal, and viral infections were detected at a median of 7, 8, and 9 days, respectively, after CAR T-cell infusion. Prior allogeneic hematopoietic cell transplantation (HCT) was an independent risk factor for infection (Hazard Ratio [HR]: 4.432 [1.262-15.565], P = 0.020). Furthermore, CRS was an independent risk factor for both infection ((HR: 2.903 [1.577-5.345], P < 0.001) and severe infection (9.040 [2.256-36.232], P < 0.001). Serum PCT, IL-6, and CRP were valuable in early infection prediction post-CAR-T therapy, particularly PCT with the highest area under the ROC curve (AUC) of 0.897. A diagnostic model incorporating PCT and CRP demonstrated an AUC of 0.903 with sensitivity and specificity above 83%. For severe infections, a model including CRS severity and PCT showed an exceptional AUC of 0.991 with perfect sensitivity and high specificity. Based on the aforementioned analysis, we proposed a workflow for the rapid identification of early infection during CAR-T cell therapy. CONCLUSIONS: CRS and prior allogeneic HCT are independent infection risk factors post-CTI in febrile B-cell malignancy patients. Our identification of novel models using PCT and CRP for predicting infection, and PCT and CRS for predicting severe infection, offers potential to guide therapeutic decisions and enhance the efficacy of CAR-T cell therapy in the future.


Asunto(s)
Antígenos CD19 , Fiebre , Inmunoterapia Adoptiva , Humanos , Femenino , Masculino , Persona de Mediana Edad , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Infecciones/sangre , Anciano , Curva ROC , Adulto Joven , Estudios Retrospectivos
16.
Plant Physiol ; 192(3): 2301-2317, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861636

RESUMEN

Heat stress has a deleterious effect on male fertility in rice (Oryza sativa), but mechanisms to protect against heat stress in rice male gametophytes are poorly understood. Here, we have isolated and characterized a heat-sensitive male-sterile rice mutant, heat shock protein60-3b (oshsp60-3b), that shows normal fertility at optimal temperatures but decreasing fertility as temperatures increase. High temperatures interfered with pollen starch granule formation and reactive oxygen species (ROS) scavenging in oshsp60-3b anthers, leading to cell death and pollen abortion. In line with the mutant phenotypes, OsHSP60-3B was rapidly upregulated in response to heat shock and its protein products were localized to the plastid. Critically, overexpression of OsHSP60-3B enhanced the heat tolerance of pollen in transgenic plants. We demonstrated that OsHSP60-3B interacted with FLOURY ENDOSPERM6(FLO6) in plastids, a key component involved in the starch granule formation in the rice pollen. Western blot results showed that FLO6 level was substantially decreased in oshsp60-3b anthers at high temperature, indicating that OsHSP60-3B is required to stabilize FLO6 when temperatures exceed optimal conditions. We suggest that in response to high temperature, OsHSP60-3B interacts with FLO6 to regulate starch granule biogenesis in rice pollen and attenuates ROS levels in anthers to ensure normal male gametophyte development in rice.


Asunto(s)
Respuesta al Choque Térmico , Oryza , Almidón , Temperatura , Fertilidad/genética , Respuesta al Choque Térmico/genética , Oryza/metabolismo , Plastidios/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Almidón/metabolismo
17.
Blood ; 140(16): 1790-1802, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35981465

RESUMEN

The bispecific T-cell engager (BiTE) blinatumomab against CD19 and CD3 has emerged as the most successful bispecific antibody (bsAb) to date; however, a significant proportion of patients do not respond to the treatments or eventually experience relapse after an initial response, and the recurrence rate increases significantly due to escape or downregulation of the CD19 antigen. To enhance antitumor efficacy and overcome potential immune escape, we developed a novel approach to design a CD19/CD22/CD3 trispecific antibody (tsAb) by site-specifically fusing anti-CD19 scFv (FMC63) and anti-CD22 nanobody (Nb25) to the defined sites of the CD3 antigen-binding fragment (Fab, SP34). This strategy allows for the optimal formation of immune synapses mediated by CD19/CD22/CD3 between target cells and T cells. Optimized tsAb can be superior for inducing T-cell-specific cytotoxicity and cytokine production against CD19+ and/or CD22+ tumor cells compared to other tsAb formats, and demonstrated significantly enhanced antitumor efficacy and the ability to overcome immune escape compared with the corresponding bsAbs alone or in combination, as well as with blinatumomab. In addition, tsAb treatment can lead to the long-term elimination of primary B-ALL patient samples in the PDX model and significantly prolong survival. This novel approach provides unique insight into the structural optimization of T-cell-redirected multispecific antibodies using site-specific recombination, and may be broadly applicable to heterogeneous and resistant tumor populations as well as solid tumors.


Asunto(s)
Anticuerpos Biespecíficos , Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Antígenos CD19 , Complejo CD3 , Recurrencia Local de Neoplasia/tratamiento farmacológico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Linfoma de Células B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Linfoma de Burkitt/tratamiento farmacológico , Citocinas , Lectina 2 Similar a Ig de Unión al Ácido Siálico
18.
Insect Mol Biol ; 33(1): 81-90, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37815404

RESUMEN

Insect odorant binding proteins (OBPs) were initially regarded as carriers of the odorants involved in chemosensation. However, it had been observed that a growing number of OBP genes exhibited broad expression patterns beyond chemosensory tissues. Here, an OBP gene (OBP31) was found to be highly expressed in the larval ventral nerve cord, adult brain and male reproductive organ of Spodoptera frugiperda. An OBP31 knockout strain (OBP31-/- ) was generated by CRISPR/Cas9 mutagenesis. For OBP31-/- , the larvae needed longer time to pupate, but there was no difference in the pupal weight between OBP31-/- and wild type (WT). OBP31-/- larvae showed stronger phototaxis than the WT larvae, indicating the importance of OBP31 in light perception. For mating rhythm of adults, OBP31-/- moths displayed an earlier second mating peak. In the cross-pairing of OBP31-/- and WT moths, the mating duration was longer, and hatchability was lower in OBP31-/- group and OBP31+/- ♂ group than that in the WT group. These results suggested that OBP31 played a vital role in larval light perception and male reproductive process and could provide valuable insights into understanding the biological functions of OBPs that were not specific in chemosensory tissues.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Masculino , Animales , Spodoptera/genética , Spodoptera/metabolismo , Fototaxis , Secuencia de Aminoácidos , Mariposas Nocturnas/genética , Larva/genética , Larva/metabolismo , Reproducción , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
19.
Phys Rev Lett ; 133(9): 090401, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39270160

RESUMEN

The traditional dynamical phase transition refers to the appearance of singularities in an observable with respect to a control parameter for a late-time state or singularities in the rate function of the Loschmidt echo with respect to time. Here, we study the many-body dynamics in a continuously monitored free fermion system with conditional feedback under open boundary conditions. We surprisingly find a novel dynamical transition from a logarithmic scaling of the entanglement entropy to an area-law scaling as time evolves. The transition, which is noticeably different from the conventional dynamical phase transition, arises from the competition between the bulk dynamics and boundary skin effects. In addition, we find that while quasidisorder or disorder cannot drive a transition for the steady state, a transition occurs for the maximum entanglement entropy during the time evolution, which agrees well with the entanglement transition for the steady state of the dynamics under periodic boundary conditions.

20.
Phys Rev Lett ; 132(25): 256201, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996262

RESUMEN

We report in situ electron microscopy observation of the superelongation deformation of low-melting-point metal nanorods. Specifically, metal nanorods with diameters as small as 143 nm can undergo uniform stretching by an extraordinary 786% at ∼0.87T_{m} without necking. Moreover, the corresponding fracture stress exhibits a pronounced size effect. By combining experimental observations with molecular dynamic simulations, a crystal-core-liquid-shell structure is revealed, based on which a constitutive model that incorporates diffusion creep mechanism and surface tension effect is developed to rationalize the findings. This study not only establishes a pioneering reference for comprehending the diffusion-dominated constitutive response of nanoscale materials but also has substantial implications for strategic design and processing of metals in high-temperature applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA