Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 436(1): 113962, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316250

RESUMEN

Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin ß6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cadenas beta de Integrinas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Adhesiones Focales/metabolismo , Luciferasas , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Microambiente Tumoral
2.
Pharmacol Res ; 203: 107174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580185

RESUMEN

The emergence of immune checkpoint inhibitors (ICIs) has revolutionized the clinical treatment for tumor. However, the low response rate of ICIs remains the major obstacle for curing patients and effective approaches for patients with primary or secondary resistance to ICIs remain lacking. In this study, immune stimulating agent unmethylated CG-enriched (CpG) oligodeoxynucleotide (ODN) was locally injected into the tumor to trigger a robust immune response to eradicate cancer cells, while anti-CD25 antibody was applied to remove immunosuppressive regulatory T cells, which further enhanced the host immune activity to attack tumor systematically. The combination of CpG and anti-CD25 antibody obtained notable regression in mouse melanoma model. Furthermore, rechallenge of tumor cells in the xenograft model has resulted in smaller tumor volume, which demonstrated that the combinational treatment enhanced the activity of memory T cells. Remarkably, this combinational therapy presented significant efficacy on multiple types of tumors as well and was able to prevent relapse of tumor partially. Taken together, our combinational immunotherapy provides a new avenue to enhance the clinical outcomes of patients who are insensitive or resistant to ICIs treatments.


Asunto(s)
Oligodesoxirribonucleótidos , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Oligodesoxirribonucleótidos/uso terapéutico , Oligodesoxirribonucleótidos/farmacología , Ratones , Ratones Endogámicos C57BL , Femenino , Humanos , Línea Celular Tumoral , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Subunidad alfa del Receptor de Interleucina-2/inmunología , Melanoma Experimental/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/terapia , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Vacunación , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
3.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467717

RESUMEN

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aconitina , Cardiotoxicidad , Histona Desacetilasas , Animales , Ratones , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Medicamentos Herbarios Chinos/farmacología
4.
BMC Med ; 21(1): 327, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635247

RESUMEN

BACKGROUND: CD133 is considered a marker for cancer stem cells (CSCs) in several types of tumours, including hepatocellular carcinoma (HCC). Chimeric antigen receptor-specific T (CAR-T) cells targeting CD133-positive CSCs have emerged as a tool for the clinical treatment of HCC, but immunogenicity, the high cost of clinical-grade recombinant viral vectors and potential insertional mutagenesis limit their clinical application. METHODS: CD133-specific CAR-T cells secreting PD-1 blocking scFv (CD133 CAR-T and PD-1 s cells) were constructed using a sleeping beauty transposon system from minicircle technology, and the antitumour efficacy of CD133 CAR-T and PD-1 s cells was analysed in vitro and in vivo. RESULTS: A univariate analysis showed that CD133 expression in male patients at the late stage (II and III) was significantly associated with worse progression-free survival (PFS) (P = 0.0057) and overall survival (OS) (P = 0.015), and a multivariate analysis showed a trend toward worse OS (P = 0.041). Male patients with advanced HCC exhibited an approximately 20-fold higher PD-L1 combined positive score (CPS) compared with those with HCC at an early stage. We successfully generated CD133 CAR-T and PD-1 s cells that could secrete PD-1 blocking scFv based on a sleeping beauty system involving minicircle vectors. CD133 CAR-T and PD-1 s cells exhibited significant antitumour activity against HCC in vitro and in xenograft mouse models. Thus, CD133 CAR-T and PD-1 s cells may be a therapeutically tractable strategy for targeting CD133-positive CSCs in male patients with advanced HCC. CONCLUSIONS: Our study provides a nonviral strategy for constructing CAR-T cells that could also secrete checkpoint blockade inhibitors based on a Sleeping Beauty system from minicircle vectors and revealed a potential benefit of this strategy for male patients with advanced HCC and high CD133 expression (median immunohistochemistry score > 2.284).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Quiméricos de Antígenos , Humanos , Masculino , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Modelos Animales de Enfermedad , Linfocitos T
5.
Small ; 19(14): e2206895, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36567429

RESUMEN

Pore-structure design with the sophisticated and pragmatic nanostructures still remains a great challenge. In this work, porous carbon with Russian-doll-like pores rather than traditional single modal is fabricated via a boiling carbonization approach, accompanied by K+ -pre-intercalation. The most important internal factor is that alkali can penetrate into the stereoscopic space of layered Malonic acid dihydrazide and the confinement effect leads to the in-depth development of different dimensional pore structures. The oxygenated and nitrogenated surface guarantees the K+ intercalation behavior. Benefiting from their open framework and enlarged interlayer spacing, K+ -pre-intercalated porous carbon with Russian-doll-like pores (denoted as KPCRPs) as anode material exhibits promising potassium storage performance. The assembled KPCRP//activated carbon potassium-ion hybrid supercapacitor in 30 m CH3 COOK displays a high energy density of 157.29 Wh kg-1 , an ultrahigh power output of 14 kW kg-1 , and a long cycling life (99.58% capacity retention after 10000 cycles), highlighting the superiority of Russian-doll-like pore structure. This work sheds light on the designing of 3D pores structure, especially for multimodal pore architectures.

6.
J Transl Med ; 21(1): 260, 2023 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-37062842

RESUMEN

BACKGROUND: More than half of the colorectal cancer (CRC) patients will develop liver metastasis that underlies the cancer mortality. In the hepatic tumor microenvironment, the interplay between CRC cells and hepatic stellate cells (HSCs), and the activation of HSCs to become carcinoma-associated fibroblasts (CAFs) will further promote the cancer development. Nevertheless, the critical signaling molecule that involved in these processes remains unknown, which hinders the development of effective therapeutic agents for the treatment of metastatic CRC (mCRC). METHODS: Conditioned medium system and co-cultured system were used to examine the interplay between CRC cells and HSCs. Luminex liquid suspension chip detection and enzyme-linked immunosorbent assay were used to screen for the mediators in the conditioned medium that facilitated the CRC-HSCs interplay and HSCs-to-CAFs differentiation. Cell and animal models were used to examine whether brevilin A inhibited CRC liver metastasis via the VEGF-IL6-STAT3 axis. RESULTS: In the CRC-HSCs interplay, CRC promoted HSCs-to-CAFs differentiation by releasing vascular endothelial growth factor (VEGF); and HSCs released interleukin 6 (IL6) that activated signal transducer and activator of transcription 3 (STAT3) in the CRC and hence increased the cancer metastatic potential. The functions of the VEGF-IL6-STAT3 axis in the HSCs-CRC interplay were further validated by VEGF recombinant protein and IL6 neutralizing antibody. More importantly, brevilin A, an active compound isolated from Centipeda minima (L.) A. Br. et Aschers, targeted the VEGF-IL6-STAT3 axis in the CRC-HSCs interplay, hence significantly inhibited colorectal liver metastasis and cancer growth both in vitro and in vivo. CONCLUSIONS: We are the first to demonstrate brevilin A possesses potent anti-mCRC effect by targeting the VEGF-IL6-STAT3 axis in the CRC-HSCs interplay. Our findings not only support the development of brevilin A as a novel therapeutic agent for mCRC treatment, but also pave the path for the development of other VEGF-IL6-STAT3 targeting therapeutic strategies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias del Recto , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/metabolismo , Células Estrelladas Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo , Medios de Cultivo Condicionados , Neoplasias Hepáticas/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
7.
Heart Fail Rev ; 28(4): 993-1007, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37160618

RESUMEN

Myocardial infarction (MI) is one of the cardiovascular diseases with high morbidity and mortality. MI causes large amounts of apoptotic and necrotic cells that need to be efficiently and instantly engulfed by macrophage to avoid second necrosis. Phagocytic macrophages can dampen or resolve inflammation to protect infarcted heart. Phagocytosis of macrophages is modulated by various factors including proteins, receptors, lncRNA and cytokines. A better understanding of mechanisms in phagocytosis will be beneficial to regulate macrophage phagocytosis capability towards a desired direction in cardioprotection after MI. In this review, we describe the phagocytosis effect of macrophages and summarize the latest reported signals regulating phagocytosis after MI, which will provide a new thinking about phagocytosis-dependent cardiac protection after MI.


Asunto(s)
Macrófagos , Infarto del Miocardio , Humanos , Células Cultivadas , Macrófagos/metabolismo , Infarto del Miocardio/metabolismo , Fagocitosis , Inflamación/metabolismo , Necrosis
8.
Acta Pharmacol Sin ; 44(12): 2504-2524, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37482570

RESUMEN

Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1ß, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1ß and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Humanos , Ratones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Interleucina-18/efectos adversos , Receptores Purinérgicos P2X7/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR , Lipopolisacáridos/farmacología , Transducción de Señal , Artritis Reumatoide/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Proteínas de Unión al GTP
9.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36627345

RESUMEN

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones , Humanos , Animales , Simulación del Acoplamiento Molecular , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Colágeno Tipo I/metabolismo
10.
Acta Pharmacol Sin ; 44(12): 2445-2454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37580492

RESUMEN

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.


Asunto(s)
Ceruletida , Pancreatitis , Masculino , Ratones , Animales , Ratas , Humanos , Enfermedad Aguda , Ceruletida/toxicidad , Modelos Animales de Enfermedad , Pancreatitis/inducido químicamente , Autofagia/fisiología , Proteínas SNARE/metabolismo , Edema
11.
Phytother Res ; 37(11): 5328-5340, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37500597

RESUMEN

Myocardial infarction (MI) is a common disease with high morbidity and mortality. Curdione is a sesquiterpenoid from Radix Curcumae. The current study is aimed to investigate the protective effect and mechanism of curdione on ferroptosis in MI. Isoproterenol (ISO) was used to induce MI injury in mice and H9c2 cells. Curdione was orally given to mice once daily for 7 days. Echocardiography, biochemical kits, and western blotting were performed on the markers of cardiac ferroptosis. Curdione at 50 and 100 mg/kg significantly alleviated ISO-induced myocardial injury. Curdione and ferrostatin-1 significantly attenuated ISO-induced H9c2 cell injury. Curdione effectively suppressed cardiac ferroptosis, evidenced by decreasing malondialdehyde and iron contents, and increasing glutathione (GSH) level, GSH peroxidase 4 (GPX4), and ferritin heavy chain 1 expression. Importantly, drug affinity responsive target stability, molecular docking, and surface plasmon resonance technologies elucidated the direct target Keap1 of curdione. Curdione disrupted the interaction between Keap1 and thioredoxin1 (Trx1) but enhanced the Trx1/GPX4 complex. In addition, curdione-derived protection against ISO-induced myocardial ferroptosis was blocked after overexpression of Keap1, while enhanced after Keap1 silence in H9c2 cells. These findings demonstrate that curdione inhibited ferroptosis in ISO-induced MI via regulating Keap1/Trx1/GPX4 signaling pathway.


Asunto(s)
Ferroptosis , Infarto del Miocardio , Animales , Ratones , Peroxidasa , Isoproterenol/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Peroxidasas , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Transducción de Señal , Glutatión
12.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686162

RESUMEN

Psychological distress is associated with an increase in liver disease mortality. This association highlights the close relationship between psychological and physical health. The underlying mechanism of this association needs to be elucidated. In this study, a rat model of anxiety was developed via compound stress. Changes in the HPA axis and inflammatory factors in the brains of the rats were evaluated for behavioral tests and liver function, respectively. The liver metabolic profiles of the rats were characterized through liquid chromatography-mass spectrometry (LC-MS). Differential metabolites were screened based on the conditions of p < 0.05 and VIP > 1. A pathway enrichment analysis was performed on the metabolomics data using the Ingenuity Pathway Analysis (IPA). Immunofluorescence (IF), immunohistochemistry (IHC), and Western blotting assays were performed to examine the expression of the screened target epidermal growth factor receptor (EGFR) and to elucidate the pathway associated with the mechanism. The results showed the impairment of liver function among the rats in an anxiety-like state. Additionally, 61 differential metabolites in the control and anxiety groups were screened using metabolomics (p < 0.05, VIP > 1). The results of the IPA analysis showed that the key target was EGFR. We also found that an anxiety-like state in rats may cause liver injury through the EFGR/PI3K/AKT/NF-κB pathway, which can lead to the production of inflammatory factors in the liver. Our results revealed a mechanism by which anxiety-like behavior leads to liver damage in rats. The findings of this study provided new insights into the deleterious effects of psychological problems on physical health.


Asunto(s)
Enfermedades del Sistema Digestivo , Hepatopatías , Distrés Psicológico , Animales , Ratas , Sistema Hipotálamo-Hipofisario , Fosfatidilinositol 3-Quinasas , Sistema Hipófiso-Suprarrenal , Ansiedad , Metabolómica , Receptores ErbB
13.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685937

RESUMEN

Early-life stress (ELS) was found to increase the risk of adolescent depression, and clinical evidence indicated that eicosapentaenoic acid (EPA) was decreased in patients with adolescent depression, but the underlying mechanisms are unclear. Here, we utilized an ELS model of maternal separation with early weaning to explore the protective role of EPA in adolescent depression. We found that that ELS induced depression-like behavior rather than anxiety-like behavior in adolescent mice. RNA-sequencing results showed that ELS changed the transcription pattern in the liver, including 863 upregulated genes and 971 downregulated genes, especially those related to the biosynthesis of unsaturated fatty acids metabolism in the liver. Moreover, ELS decreased the expression of the rate-limiting enzymes, fatty acid desaturases 1/2 (FADS1/2), involved in the biosynthesis of EPA in the liver. Additionally, ELS reduced the levels of EPA in the liver, serum, and hippocampus, and EPA administration improved depression-like behavior-induced by ELS. Our results provide transcriptomic evidence that ELS increases the risk of adolescent depression by reducing the synthesis of unsaturated fatty acids in the liver, especially EPA, and suggest that supplementation with EPA should be investigated as a potential treatment for adolescent depression.


Asunto(s)
Depresión , Ácido Eicosapentaenoico , Estrés Psicológico , Animales , Ratones , Depresión/etiología , Depresión/genética , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/farmacología , Hígado , Privación Materna , Transcriptoma
14.
Gut ; 71(4): 734-745, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34006584

RESUMEN

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Panax , Animales , Anticuerpos Monoclonales/farmacología , Apoptosis , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Muerte Celular , Microbioma Gastrointestinal/fisiología , Humanos , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Quinurenina/farmacología , Ligandos , Neoplasias Pulmonares/terapia , Ratones , Panax/metabolismo , Polisacáridos/farmacología , Triptófano/farmacología
15.
Drug Metab Rev ; 54(1): 1-21, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34807779

RESUMEN

UDP-glucuronyltransferase 1A1 (UGT1A1) is a member of the Phase II metabolic enzyme family and the only enzyme that can metabolize detoxified bilirubin. Inactivation and very low activity of UGT1A1 in the liver can be fatal or lead to lifelong Gilbert's syndrome (GS) and Crigler-Najjar syndrome (CN). To date, more than one hundred UGT1A1 polymorphisms have been discovered. Although most UGT1A1 polymorphisms are not fatal, which diseases might be associated with low activity UGT1A1 or UGT1A1 polymorphisms? This scientific topic has been studied for more than a hundred years, there are still many uncertainties. Herein, this article will summarize all the possibilities of UGT1A1 gene-related diseases, including GS and CN, neurological disease, hepatobiliary disease, metabolic difficulties, gallstone, cardiovascular disease, Crohn's disease (CD) obesity, diabetes, myelosuppression, leukemia, tumorigenesis, etc., and provide guidance for researchers to conduct in-depth study on UGT1A1 gene-related diseases. In addition, this article not only summarizes the prevention strategies of UGT1A1 gene-related diseases, but also puts forward some insights for sharing.


Asunto(s)
Síndrome de Crigler-Najjar , Enfermedad de Gilbert , Glucuronosiltransferasa/genética , Bilirrubina/metabolismo , Síndrome de Crigler-Najjar/genética , Enfermedad de Gilbert/genética , Glucuronosiltransferasa/metabolismo , Humanos , Polimorfismo Genético
16.
Toxicol Appl Pharmacol ; 445: 116024, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35439480

RESUMEN

Bulleyaconitine A (BLA), a toxic Aconitum alkaloid, is a potent analgesic that is clinically applied to treat rheumatoid arthritis, osteoarthritis and lumbosacral pain. BLA-related adverse reactions occur frequently, but whether the underlying mechanism is related to its metabolic interplay with drug-metabolizing enzymes remains unclear. This study aimed to elucidate the metabolic characteristics of BLA and its affinity action and mechanism to drug-metabolizing enzymes to reveal whether BLA-related adverse reactions are modulated by enzymes. After incubation with human liver microsomes and recombinant human cytochrome P450 enzymes, we found that BLA was predominantly metabolized by CYP3A, in which CYP3A4 had an almost absolute advantage. In vitro, the CYP3A4 inhibitor ketoconazole noticeably suppressed the metabolism of BLA. In vivo, the AUC0-∞ values, cardiotoxicity and neurotoxicity of BLA in Cyp3a-inhibited mice were all obviously enhanced (P < 0.05) compared to those in normal mice. In the enzyme kinetics study, BLA was found to be a sensitive substrate of CYP3A4, and its characteristics were consistent with substrate inhibition (Km = 39.36 ± 10.47 µmol/L, Ks = 83.42 ± 19.65 µmol/L). BLA was further identified to be a competitive inhibitor of CYP3A4 with Ki = 53.64 µmol/L, since the intrinsic clearance (CLint) of midazolam, a selective CYP3A4 substrate, decreased significantly (P < 0.05) when incubated with BLA together in mouse liver microsomes. Overall, BLA is a sensitive substrate and competitive inhibitor of CYP3A4, and clinical adverse reactions of BLA may mechanistically related to the CYP3A4-mediated drug-drug interactions.


Asunto(s)
Aconitina , Citocromo P-450 CYP3A , Proteínas de la Membrana , Microsomas Hepáticos , Proteínas de Saccharomyces cerevisiae , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Cetoconazol/farmacología , Proteínas de la Membrana/farmacología , Ratones , Microsomas Hepáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacología
17.
Virol J ; 19(1): 212, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494863

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus and its variants, has posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against SARS-CoV-2 variants. Therefore, novel vaccines to match mutated viral lineages by providing long-term protective immunity are urgently needed. We designed a recombinant adeno-associated virus 5 (rAAV5)-based vaccine (rAAV-COVID-19) by using the SARS-CoV-2 spike protein receptor binding domain (RBD-plus) sequence with both single-stranded (ssAAV5) and self-complementary (scAAV5) delivery vectors and found that it provides excellent protection from SARS-CoV-2 infection. A single-dose vaccination in mice induced a robust immune response; induced neutralizing antibody (NA) titers were maintained at a peak level of over 1:1024 more than a year post-injection and were accompanied by functional T-cell responses. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines produced high levels of serum NAs against the circulating SARS-CoV-2 variants, including Alpha, Beta, Gamma and Delta. A SARS-CoV-2 virus challenge showed that the ssAAV5-RBD-plus vaccine protected both young and old mice from SARS-CoV-2 infection in the upper and lower respiratory tracts. Whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genomes of vaccinated mice one year after vaccination, demonstrating vaccine safety. These results suggest that the rAAV5-based vaccine is safe and effective against SARS-CoV-2 and several variants as it provides long-term protective immunity. This novel vaccine has a significant potential for development into a human prophylactic vaccination to help end the global pandemic.


Asunto(s)
COVID-19 , Parvovirinae , Animales , Humanos , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Pandemias , Vacunas Sintéticas/genética , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales
18.
Pharmacol Res ; 175: 105977, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798265

RESUMEN

Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.


Asunto(s)
Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Prostaglandina-E Sintasas/antagonistas & inhibidores , Prostaglandina-E Sintasas/metabolismo , Animales , Humanos
19.
J Pathol ; 255(4): 412-424, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34410012

RESUMEN

ABCB11 encodes the bile salt export pump (BSEP), a key regulator in maintaining bile acid (BA) homeostasis. Although inherited ABCB11 mutations have previously been linked to primary liver cancer, whether ABCB11 deficiency leads to liver cancer remains unknown. Here, we analyzed ABCB11 mRNA expression levels in liver tumor specimens [29 with hepatocellular carcinoma (HCC), one with intrahepatic cholangiocarcinoma (ICC), and one with mixed HCC/ICC] with adjacent normal specimens and published human datasets. Liver tissues obtained from Abcb11-deficient (Abcb11-/- ) mice and wild-type mice at different ages were compared by histologic, RNA-sequencing, and BA analyses. ABCB11 was significantly downregulated in human liver tumors compared with normal controls. Abcb11-/- mice demonstrated progressive intrahepatic cholestasis and liver fibrosis, and spontaneously developed HCC and ICC over 12 months of age. Abcb11 deficiency increased BAs in the liver and serum in mice, most of which are farnesoid X receptor (FXR) antagonists/non-agonists. Accordingly, the hepatic expression and transcriptional activity of FXR were downregulated in Abcb11-/- mouse livers. Administration of the FXR agonist obeticholic acid reduced liver injury and tumor incidence in Abcb11-/- mice. In conclusion, ABCB11 is aberrantly downregulated and plays a vital role in liver carcinogenesis. The cholestatic liver injury and liver tumors developed in Abcb11-/- mice are associated with increased FXR antagonist BAs and thereby decreased activation of FXR. FXR activation might be a therapeutic strategy in ABCB11 deficiency diseases. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Carcinogénesis/metabolismo , Neoplasias Hepáticas/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ácidos y Sales Biliares/metabolismo , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Regulación hacia Abajo , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
20.
Bioorg Chem ; 120: 105596, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051709

RESUMEN

Histone lysine specific demethylase 1 (LSD1) is a promising new therapeutic target for cancer therapy. Following the work on the discovery of natural LSD1 inhibitor higenamine, we herein performed further structure-based design, synthesis, and extensive structure-activity relationship (SAR) studies, affording structurally new spirooxindole derivatives. Particularly, FY-56 was identified to be a highly potent LSD1 inhibitor (IC50 = 42 nM) and showed high selectivity over monoamine oxidases (MAO-A/B). Mechanistic studies showed that FY-56 moderately inhibited the proliferation and clone formation of leukemia cells, induced H3K4me1/2 accumulation and p53 activation as well as reduced the mRNA levels of the transcription factors HOXA9 and MEIS1. Meanwhile, FY-56 induced differentiation of MOLM-13 and MV4-11 cells, accompanied by an enhanced percentage of markers characteristic to differentiated macrophages and monocytes. Further in vivo studies showed that FY-56 obviously reduced the proportion of CD45+/CD33+ leukocytes in peripheral blood and spleen, and significantly prolonged the survival rate of mice. Collectively, FY-56 represents a structurally novel, highly potent and selective LSD1 inhibitor and exhibits therapeutic promise for AML treatment. The spirooxindole scaffold derived from FY-56 could be used to design structurally new LSD1 inhibitors for treating human diseases.


Asunto(s)
Productos Biológicos , Leucemia Mieloide Aguda , Animales , Productos Biológicos/uso terapéutico , Inhibidores Enzimáticos , Histona Demetilasas , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA