Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(19): e112999, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37622245

RESUMEN

Cold stress is a major abiotic stress that adversely affects plant growth and crop productivity. The C-REPEAT BINDING FACTOR/DRE BINDING FACTOR 1 (CBF/DREB1) transcriptional regulatory cascade plays a key role in regulating cold acclimation and freezing tolerance in Arabidopsis (Arabidopsis thaliana). Here, we show that max (more axillary growth) mutants deficient in strigolactone biosynthesis and signaling display hypersensitivity to freezing stress. Exogenous application of GR245DS , a strigolactone analog, enhances freezing tolerance in wild-type plants and strigolactone-deficient mutants and promotes the cold-induced expression of CBF genes. Biochemical analysis showed that the transcription factor WRKY41 serves as a substrate for the F-box E3 ligase MAX2. WRKY41 directly binds to the W-box in the promoters of CBF genes and represses their expression, negatively regulating cold acclimation and freezing tolerance. MAX2 ubiquitinates WRKY41, thus marking it for cold-induced degradation and thereby alleviating the repression of CBF expression. In addition, SL-mediated degradation of SMXLs also contributes to enhanced plant freezing tolerance by promoting anthocyanin biosynthesis. Taken together, our study reveals the molecular mechanism underlying strigolactones promote the cold stress response in Arabidopsis.

2.
EMBO J ; 40(20): e107237, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34523147

RESUMEN

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Asunto(s)
Liposomas/química , Lípidos de la Membrana/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteína Destructora del Antagonista Homólogo bcl-2/química , Animales , Sitios de Unión , Clonación Molecular , Medición de Intercambio de Deuterio , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo
3.
Mol Cell ; 66(1): 117-128.e5, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344081

RESUMEN

In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Membrana Celular/enzimología , Núcleo Celular/enzimología , Frío , Respuesta al Choque por Frío , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sensación Térmica , Factores de Transcripción/metabolismo , Proteínas 14-3-3/genética , Transporte Activo de Núcleo Celular , Adaptación Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Activación Enzimática , Genotipo , Fluidez de la Membrana , Mutación , Fenotipo , Fosforilación , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Factores de Tiempo , Factores de Transcripción/genética
4.
Emerg Infect Dis ; 30(7): 1434-1437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38916639

RESUMEN

We investigated Alongshan virus infection in reindeer in northeastern China. We found that 4.8% of the animals were viral RNA-positive, 33.3% tested positive for IgG, and 19.1% displayed neutralizing antibodies. These findings suggest reindeer could serve as sentinel animal species for the epidemiologic surveillance of Alongshan virus infection.


Asunto(s)
Anticuerpos Antivirales , Reno , Animales , Reno/virología , China/epidemiología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Infecciones por Bunyaviridae/veterinaria , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/virología , ARN Viral , Inmunoglobulina G/sangre
5.
Small ; 20(30): e2400356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38389174

RESUMEN

Nickel oxide (NiOx) has been limited in use as a hole transport layer for its low conduction, surface defects, and redox reactions with the perovskite layer. To address these issues, the incorporation of zwitterion L-tryptophan (Trp) is proposed at the NiOx/Trp interface. The carboxyl group of Trp effectively passivates the surface positive defects of NiOx, thereby improving its optical and electrical properties. The ammonium group of Trp not only passivates negative defects but modulates the growth of the perovskite layer, resulting in an improved perovskite film quality. Furthermore, the Trp layer acts as a buffer layer, suppressing adverse interfacial reactions between the perovskite and NiOx. Consequently, perovskite solar cells with 1.56 and 1.68 eV absorbers achieve the champion power conversion efficiency (PCE) of 23.79% and 20.41%, respectively. Moreover, the unencapsulated devices demonstrate excellent long-term stability, retaining above 80% of the initial PCE value after 1600 h of storage in the air with a humidity of 50-60%.

6.
Small ; 20(4): e2305484, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37712145

RESUMEN

Hole-transporting layers (HTLs) play a crucial role in the performance of inverted, p-i-n perovskite solar cells (PSCs). Chlorophylls (Chls) are naturally abundant organic photoconductors on earth, with good charge carrier mobility and appropriate Fermi energy levels that make them promising candidates for use in photovoltaic devices. However, Chls films prepared using the solution method exhibit lower carrier mobility compared to other organic polymer films, which limits their application in PSCs. To address this issue, Chls molecules are chemically linked to reduce the charge transfer barrier, thus the transfer of charges between molecules is transformed to intramolecular charge transfer. This study synthesizes and characterizes two polymerized Chl films, PolyCuChl and PolyNiChl, as HTLs of CH3 NH3 PbI3 -based PSCs. PSCs based on the electrochemical polymerization of PolyChl HTLs demonstrate an enhanced power conversion efficiency (PCE) of up to 19.0%, which is the highest efficiency among devices based on Chl materials. Furthermore, these devices demonstrated exceptional long-term stability. These results highlight the potential of polymerized Chl films as a viable alternative to conventional HTLs in PSCs. The approach utilizes abundant, environmentally friendly, and versatile Chl derivatives, and can be extended to develop next-generation HTL materials for improved PSC performance.

7.
Small ; 20(43): e2403460, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39169745

RESUMEN

In the realm of photovoltaic research, 2D transition metal carbides (MXenes) have gained significant interest due to their exceptional photoelectric capabilities. However, the instability of MXenes due to oxidation has a direct impact on their practical applications. In this work, the oxidation process of Nb2CTx MXene in aqueous systems is methodically simulated at the atomic level and nanosecond timescales, which elucidates the structural variations influenced by the synergistic effects of water and dissolved oxygen, predicting a transition from metal to semiconductor with 44% C atoms replaced by O atoms in Nb2CTx. Moreover, Nb2CTx with varying oxidation degrees is utilized as electron transport layers (ETLs) in perovskite solar cells (PSCs). Favorable energy level alignments with superior electron transfer capability are achieved by controlled oxidation. By further exploring the composites of Nb2CTx to its derivatives, the strong interaction of the nano-composites is demonstrated to be more effective for electron transport, thus the corresponding PSC achieves a better performance with long-term stability compared with the widely used ETLs like SnO2. This work unravels the oxidation dynamics of Nb2CTx and provides a promising approach to designing ETL by exploiting MXenes to their derivatives for photovoltaic technologies.

8.
Eur Radiol ; 34(9): 6121-6131, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38337068

RESUMEN

OBJECTIVES: We aimed to develop a multi-modality model to predict axillary lymph node (ALN) metastasis by combining clinical predictors with radiomic features from magnetic resonance imaging (MRI) and mammography (MMG) in breast cancer. This model might potentially eliminate unnecessary axillary surgery in cases without ALN metastasis, thereby minimizing surgery-related complications. METHODS: We retrospectively enrolled 485 breast cancer patients from two hospitals and extracted radiomics features from tumor and lymph node regions on MRI and MMG images. After feature selection, three random forest models were built using the retained features, respectively. Significant clinical factors were integrated with these radiomics models to construct a multi-modality model. The multi-modality model was compared to radiologists' diagnoses on axillary ultrasound and MRI. It was also used to assist radiologists in making a secondary diagnosis on MRI. RESULTS: The multi-modality model showed superior performance with AUCs of 0.964 in the training cohort, 0.916 in the internal validation cohort, and 0.892 in the external validation cohort. It surpassed single-modality models and radiologists' ALN diagnosis on MRI and axillary ultrasound in all validation cohorts. Additionally, the multi-modality model improved radiologists' MRI-based ALN diagnostic ability, increasing the average accuracy from 70.70 to 78.16% for radiologist A and from 75.42 to 81.38% for radiologist B. CONCLUSION: The multi-modality model can predict ALN metastasis of breast cancer accurately. Moreover, the artificial intelligence (AI) model also assisted the radiologists to improve their diagnostic ability on MRI. CLINICAL RELEVANCE STATEMENT: The multi-modality model based on both MRI and mammography images allows preoperative prediction of axillary lymph node metastasis in breast cancer patients. With the assistance of the model, the diagnostic efficacy of radiologists can be further improved. KEY POINTS: • We developed a novel multi-modality model that combines MRI and mammography radiomics with clinical factors to accurately predict axillary lymph node (ALN) metastasis, which has not been previously reported. • Our multi-modality model outperformed both the radiologists' ALN diagnosis based on MRI and axillary ultrasound, as well as single-modality radiomics models based on MRI or mammography. • The multi-modality model can serve as a potential decision support tool to improve the radiologists' ALN diagnosis on MRI.


Asunto(s)
Axila , Neoplasias de la Mama , Metástasis Linfática , Imagen por Resonancia Magnética , Mamografía , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética/métodos , Metástasis Linfática/diagnóstico por imagen , Persona de Mediana Edad , Mamografía/métodos , Estudios Retrospectivos , Adulto , Anciano , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Imagen Multimodal/métodos , Radiómica
9.
Prev Med ; 187: 108091, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111375

RESUMEN

BACKGROUND: Acceleration of aging is a major challenge in public health. Previous studies have focused on the associations between specific types of exercise or overall levels of physical activity with accelerated aging, with less attention given to the weekly exercise patterns. OBJECTIVE: To explore the relationship between weekly exercise patterns and acceleration of aging among American adults. METHODS: We extracted data from the 2015-2018 National Health and Nutrition Examination Survey (NHANES), involving 9850 participants aged ≥20 with comprehensive records on exercise and phenotypic age. Hierarchical clustering categorized participants into three groups based on weekly exercise time and days: cluster 1 (Rare or No Exercise), cluster 2 (Moderate Frequency, Moderate Duration) and cluster 3 (Moderate Frequency, Long Duration). Acceleration of aging was defined as the phenotypic age advance >0. RESULTS: After full adjustment, weekly exercise time and days showed the significant non-linear negative correlation with accelerated aging. The risk of accelerated aging was lowest when weekly exercise days reached five and the weekly exercise time reached three hours. Both cluster 2 and cluster 3 were significantly negatively correlated with acceleration of aging. No significant differences were observed in the association with accelerated aging between cluster 2 and cluster 3. CONCLUSIONS: These findings highlight the importance of targeted exercise programs for healthy aging. They also emphasize the need for public health initiatives to integrate regular physical activity into daily routines to improve the longevity and well-being of American adults.


Asunto(s)
Ejercicio Físico , Encuestas Nutricionales , Humanos , Ejercicio Físico/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Envejecimiento/fisiología , Adulto , Estados Unidos , Factores de Tiempo
10.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729251

RESUMEN

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Asunto(s)
Alimentación Animal , Bacillus , Dieta , Disbiosis , Enteritis , Enfermedades de los Peces , Microbioma Gastrointestinal , Glycine max , Lipopolisacáridos , Peptidoglicano , Ácidos Teicoicos , Animales , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Disbiosis/veterinaria , Disbiosis/inmunología , Bacillus/fisiología , Bacillus/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria , Glycine max/química , Lipopolisacáridos/farmacología , Ácidos Teicoicos/farmacología , Peptidoglicano/farmacología , Peptidoglicano/administración & dosificación , Lubina/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Suplementos Dietéticos/análisis , Distribución Aleatoria
11.
Fish Shellfish Immunol ; 145: 109370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216004

RESUMEN

Live commensal Bacillus siamensis LF4 showed reparative potentials against high SM-induced negative effects, but whether its paraprobiotic (heat-killed B. siamensis, HKBS) and postbiotic (cell-free supernatant, CFS) forms had reparative functions and potential mechanisms are not yet known. In this study, the reparative functions of HKBS and CFS were investigated by establishing an injured model of spotted seabass (Lateolabrax maculatus) treated with dietary high soybean meal (SM). The results showed that HKBS and CFS effectively mitigated growth suppression, immune deficiency, and liver injury induced by dietary high SM. Simultaneously, HKBS and CFS application positively shaped intestinal microbiota by increased the abundance of beneficial bacteria (Fusobacteria, Firmicutes, Bacteroidota, and Cetobacterium) and decreased harmful bacteria (Proteobacteria and Plesiomonasare). Additionally, HKBS and CFS improved SM-induced intestinal injury by restoring intestinal morphology, upregulating the expression of tight junction proteins, anti-inflammatory cytokines, antimicrobial peptides, downregulating the expression of pro-inflammatory cytokines and apoptotic proteins. Furthermore, HKBS and CFS intervention significantly activated TLR2, TLR5 and MyD88 signaling, and eventually inhibited p38 and NF-κB pathways. In conclusion, paraprobiotic (HKBS) and postbiotic (CFS) from B. siamensis LF4 can improve growth, immunity, repair liver and intestinal injury, and shape intestinal microbiota in L. maculatus fed high soybean meal diet, and TLRs/p38 MAPK/NF-κB signal pathways might be involved in those processes. These results will serve as a base for future application of paraprobiotics and postbiotics to prevent and repair SM-induced adverse effects in fish aquaculture.


Asunto(s)
Bacillus , Lubina , FN-kappa B , Animales , Harina , Dieta , Hígado/metabolismo , Citocinas/metabolismo , Alimentación Animal/análisis
12.
J Fluoresc ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320635

RESUMEN

Highly luminescent carbon dots (CDs) derived from fermented beverages-kvass (K-CDs) were synthesized through a one-step hydrothermal method with ethylenediamine (EDA) as a surface passivation reagent. Purified K-CDs with a fluorescent quantum yield of 35.1% were obtained after a dialysis process. The K-CDs were characterized by TEM, FT-IR, XPS, fluorescence and UV-vis spectroscopy. The results indicated that K-CDs possess typical excitation wavelength-dependent blue fluorescence emission, and the strongest excitation and emission wavelengths are 350 nm and 440 nm, respectively. The great spectral overlap between the emission peak (440 nm) of K-CDs and the absorption peak (430 nm) of tartrazine (TAR) leads to an effective fluorescence quenching phenomenon by TAR through inner filter effect (IFE) and the calculated (lg(I0/I)) showed a linear response to TAR concentration in the range of 0.1-70 µM. The detection limit of the developed method is 23 nM for TAR, and the relative standard deviation (RSD) is 3.9% (c = 10 µM, n = 7). The fluorescent sensor for TAR based on K-CDs through the IFE mechanism possesses the characteristics of rapid, sensitive, and high selectivity. It has been successfully applied to detect of trace TAR in foods.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39303149

RESUMEN

OBJECTIVES: To compare the image quality and radiation dose in coronary computed tomography angiography (CCTA) based on different acquisition time windows corresponding to the heart rate of breath-holding after free breathing. METHODS: Two hundred patients who underwent CCTA with a basal heart rate between 70 and 85 beats/min were divided into groups A and B, with 100 patients in each group. Patients in groups A and B were scanned with the acquisition time window corresponding to the heart rate determined during a breath hold obtained after free breathing and the basal heart rate during free breathing, respectively. Computed tomography (CT) attenuation values of the coronary artery, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were calculated. The subjective image scores of the groups were assessed blindly by 2 experienced physicians using a 4-point system, and score consistency was compared using the κ test. The volume CT dose index and dose-length product were recorded for each patient, and the effective dose (ED) was calculated. The Kruskal-Wallis H test was performed to evaluate differences in age, heart rate, and body mass index. A χ2 test was used to evaluate sex differences. An independent-sample t test was employed to compare objective and subjective data such as dose-length product, volume CT dose index, ED, SNR, CNR, and averaged subjective assessment scores. Statistical significance was set at P < 0.05. RESULTS: No statistically significant differences occurred in sex, age, or body mass index between patients in group A and group B (all P > 0.05). No significant differences occurred in the mean CT values, mean SNR values, mean CNR values, or mean subjective scores of CCTA images between the patients in groups A and B (P > 0.05). The ED values of the patients in group A were 52.93% lower than those in group B (P < 0.001). CONCLUSION: The radiation dose in CCTA examinations can be significantly reduced while maintaining image quality by narrowing the acquisition time window for breath-holding after free breathing.

14.
Cryobiology ; 115: 104889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513998

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapies are increasingly adopted as a commercially available treatment for hematologic and solid tumor cancers. As CAR-T therapies reach more patients globally, the cryopreservation and banking of patients' leukapheresis materials is becoming imperative to accommodate intra/inter-national shipping logistical delays and provide greater manufacturing flexibility. This study aims to determine the optimal temperature range for transferring cryopreserved leukapheresis materials from two distinct types of controlled rate freezing systems, Liquid Nitrogen (LN2)-based and LN2-free Conduction Cooling-based, to the ultracold LN2 storage freezer (≤-135 °C), and its impact on CAR T-cell production and functionality. Presented findings demonstrate that there is no significant influence on CAR T-cell expansion, differentiation, or downstream in-vitro function when employing a transfer temperature range spanning from -30 °C to -80 °C for the LN2-based controlled rate freezers as well as for conduction cooling controlled rate freezers. Notably, CAR T-cells generated from cryopreserved leukapheresis materials using the conduction cooling controlled rate freezer exhibited suboptimal performance in certain donors at transfer temperatures lower than -60 °C, possibly due to the reduced cooling rate of lower than 1 °C/min and extended dwelling time needed to reach the final temperatures within these systems. This cohort of data suggests that there is a low risk to transfer cryopreserved leukapheresis materials at higher temperatures (between -30 °C and -60 °C) with good functional recovery using either controlled cooling system, and the cryopreserved materials are suitable to use as the starting material for autologous CAR T-cell therapies.


Asunto(s)
Criopreservación , Inmunoterapia Adoptiva , Leucaféresis , Linfocitos T , Criopreservación/métodos , Leucaféresis/métodos , Humanos , Linfocitos T/citología , Linfocitos T/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos , Temperatura , Congelación , Técnicas de Cultivo de Célula/métodos
15.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612714

RESUMEN

Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.


Asunto(s)
Arabidopsis , Ésteres , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Naftalenos , Simulación del Acoplamiento Molecular , Ácidos Carboxílicos
16.
Emerg Infect Dis ; 29(4): 797-800, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958012

RESUMEN

We identified Yezo virus infection in a febrile patient who had a tick bite in northeastern China, where 0.5% of Ixodes persulcatus ticks were positive for viral RNA. Clinicians should be aware of this potential health threat and include this emerging virus in the differential diagnosis for tick-bitten patients in this region.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Virosis , Virus , Animales , Humanos , China/epidemiología
17.
Fish Shellfish Immunol ; 134: 108575, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36736639

RESUMEN

Yellow drum (Nibea albiflora), a commercially important fish species in the coastal regions of southeast China, is highly susceptible to red-head disease caused by Vibrio harveyi B0003. Probiotics have been shown to enhance disease resistance in fish, but whether commensal probiotics could improve of the resistance to red-head disease in yellow drum and possible mechanisms has yet not been reported. A six-week feeding trial was conducted to investigate the red-head disease resistance potentials of five probiotic candidates (Bacillus megaterium B1M2, B. subtilis B0E9, Enterococcus faecalis AT5, B. velezensis DM5 and B. siamensis B0E14), and the liver health, serum and skin immunities, gut and skin mucosal microbiota of yellow drum were determined to illustrate the possible mechanisms. The results showed that autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5, P < 0.05) effectively improved red-head disease resistance in yellow drum. Furthermore, B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) efficiently improve liver health by improving liver morphology and decreasing serum glutamic oxaloacetic transaminase and glutamic propylic transaminase activities pre and post challenged with V. harveyi B0003 (P < 0.05). B. subtilis B0E9 and E. faecalis AT5 led to significant improvement (P < 0.05) in the serum complement 3 content (un-detected after challenged with V. harveyi B0003), lysozyme activity and skin mucosal immunity (such as IL-6, IL-10 and lysozyme expression) pre and post challenged with V. harveyi B0003, which was generally consistent with the cumulative mortality after challenged with V. harveyi B0003. This induced activations of serum and skin mucosal immunities were consistent with the microbiota data showing that B. subtilis B0E9 and E. faecalis AT5 modulated the overall structure of intestinal and skin mucosal microbiota, and in particular, the relative abundance of potentially pathogenic Achromobacter decreased while beneficial Streptococcus, Rothia, and Lactobacillus increased in fish fed with B. subtilis B0E9 and E. faecalis AT5. Overall, autochthonous B. subtilis B0E9 and E. faecalis AT5 (particularly E. faecalis AT5) can improve liver health, serum and skin immunities (especially up-regulated lysozyme activity and inflammation-related genes expression), positively shape gut and skin mucosal microbiota, and enhance red-head disease resistance of yellow drum.


Asunto(s)
Enfermedades de los Peces , Microbiota , Perciformes , Probióticos , Animales , Resistencia a la Enfermedad , Bacillus subtilis , Inmunidad Mucosa , Enterococcus faecalis , Muramidasa , Probióticos/farmacología , Peces , Hígado
18.
Fish Shellfish Immunol ; 134: 108634, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36828198

RESUMEN

Antimicrobial peptides (AMPs) play an important role in modulating intestinal microbiota, and our previous study showed that autochthonous Baccilus siamensis LF4 could shape the intestinal microbiota of spotted seabass (Lateolabrax maculatus). In the present study, a spotted seabass intestinal epithelial cells (IECs) model was used to investigate whether autochthonous B. siamensis LF4 could modulate the expression of AMPs in IECs. And then, the IECs were treated with active, heat-inactivated LF4 and its supernatant to illustrate their AMPs inducing effects and the possible signal transduction mechanisms. The results showed that after 3 h of incubation with 108 CFU/mL B. siamensis LF4, lactate dehydrogenase (LDH), glutamic oxaloacetic transaminase (GOT), glutamic propylic transaminase (GPT) activities in supernatant decreased significantly and obtained minimum values, while supernatant alkaline phosphatase (AKP) activity, ß-defensin protein level and IECs Na+/K+-ATPase activity, AMPs (ß-defensin, hepcidin-1, NK-lysin, piscidin-5) genes expression increased significantly and obtained maximum values (P < 0.05). Further study demonstrated that the active, heat-inactivated LF4 and its supernatant treatments could effectively decrease the LDH, GOT, and GPT activities in IECs supernatant, increase AKP activity and ß-defensin (except LF4 supernatant treatment) protein level in IECs supernatant and Na+/K+-ATPase and AMPs genes expression in IECs. Treatment with active and heat-inactivated B. siamensis LF4 resulted in significantly up-regulated the expressions of TLR1, TLR2, TLR3, TLR5, NOD1, NOD2, TIRAP, MyD88, IRAK1, IRAK4, TRAF6, TAB1, TAB2, ERK, JNK, p38, AP-1, IKKα, IKKß and NF-κB genes. Treatment with B. siamensis LF4 supernatant also resulted in up-regulated these genes, but not the genes (ERK, JNK, p38, and AP-1) in MAPKs pathway. In summary, active, heat-inactivated and supernatant of B. siamensis LF4 can efficiently induce AMPs expression through activating the TLRs/NLRs-MyD88-dependent signaling, active and heat-inactivated LF4 activated both the downstream MAPKs and NF-κB pathways, while LF4 supernatant only activated NF-κB pathway.


Asunto(s)
FN-kappa B , beta-Defensinas , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Péptidos Antimicrobianos , beta-Defensinas/metabolismo , Factor de Transcripción AP-1/metabolismo , Transducción de Señal/fisiología , Células Epiteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
19.
Fish Shellfish Immunol ; 141: 109010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37598736

RESUMEN

ß-conglycinin is a recognized factor in leading to intestinal inflammation and limiting application of soybean meal in aquaculture. Our previous study reported that heat-killed B. siamensis LF4 could effectively mitigate inflammatory response and apoptosis caused by ß-conglycinin in spotted seabass (Lateolabrax maculatus) enterocytes, but the mechanisms involved are not fully understood. In the present study, therefore, whole cell wall (CW), peptidoglycan (PG) and lipoteichoic acid (LTA) and cell-free supernatant (CFS) have been collected from B. siamensis LF4 and their mitigative function on ß-conglycinin-induced adverse impacts and mechanisms underlying were evaluated. The results showed that ß-conglycinin-induced cell injury, characterized with significantly decreased cell viability and increased activities of lactate dehydrogenase, glutamic oxaloacetic transaminase, glutamic propylic transaminase (P < 0.05), were reversed by subsequent heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS treatment. Enterocytes co-cultured with heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS (especially PG) significantly increased expressions of anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1), tight junction proteins (ZO-1, occludin and claudin-b) and antimicrobial peptides (ß-defensin, hepcidin-1, NK-lysin and piscidin-5), and decreased expressions of pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis-related genes (caspase 3, caspase 8 and caspase 9) (P < 0.05), indicating their excellent mitigation effects on ß-conglycinin-induced cell damages. In addition, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS significantly increased TLR2 mRNA level (especially in PG treatment), and decreased MAPKs (JNK, ERK, p38 and AP-1) and NF-κB related genes expressions. In conclusion, heat-killed B. siamensis LF4 and its CW, LTA, PG and CFS could modulating TLR2/MAPKs/NF-κB signaling and alleviating ß-conglycinin-induced enterocytes injury in spotted seabass (L. maculatus), and PG presented the best potential.

20.
Fish Shellfish Immunol ; 137: 108797, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37149232

RESUMEN

ß-conglycinin and glycinin, two major heat-stable anti-nutritional factors in soybean meal (SM), have been suggested as the key inducers of intestinal inflammation in aquatic animals. In the present study, a spotted seabass intestinal epithelial cells (IECs) were used to compare the inflammation-inducing effects of ß-conglycinin and glycinin. The results showed that IECs co-cultured with 1.0 mg/mL ß-conglycinin for 12 h or 1.5 mg/mL glycinin for 24 h significantly decreased the cell viability (P < 0.05), and overstimulated inflammation and apoptosis response by significantly down-regulating anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1) expressions and significantly up-regulated pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis genes (caspase 3, caspase 8 and caspase 9) expressions (P < 0.05). Subsequently, a ß-conglycinin based inflammation IECs model was established and used for demonstrating whether commensal probiotic B. siamensis LF4 can ameliorate the adverse effects of ß-conglycinin. The results showed ß-conglycinin-induced cell viability damage was completely repaired by treated with 109 cells/mL heat-killed B. siamensis LF4 for ≥12 h. At the same time, IECs co-cultured with 109 cells/mL heat-killed B. siamensis LF4 for 24 h significantly ameliorated ß-conglycinin-induced inflammation and apoptosis by up-regulating anti-inflammatory genes (IL-2, IL-4, IL-10 and TGF-ß1) expressions and down-regulated pro-inflammatory genes (IL-1ß, IL-8 and TNF-α) and apoptosis genes (caspase 3, caspase 8 and caspase 9) expressions (P < 0.05). In summary, both ß-conglycinin and glycinin can lead to inflammation and apoptosis in spotted seabass IECs, and ß-conglycinin is more effective; commensal B. siamensis LF4 can efficiently ameliorate ß-conglycinin induced inflammation and apoptosis in IECs.


Asunto(s)
Interleucina-10 , Factor de Crecimiento Transformador beta1 , Animales , Caspasa 3/metabolismo , Interleucina-10/metabolismo , Caspasa 9 , Factor de Crecimiento Transformador beta1/metabolismo , Caspasa 8 , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-2 , Interleucina-4/metabolismo , Interleucina-8 , Proteínas de Soja/efectos adversos , Inflamación/inducido químicamente , Inflamación/veterinaria , Inflamación/metabolismo , Células Epiteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA