RESUMEN
Because of its role in mediating both B cell and Fc receptor signaling, Bruton's tyrosine kinase (BTK) is a promising target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Evobrutinib is a novel, highly selective, irreversible BTK inhibitor that potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of human B cells and innate immune cells such as monocytes and basophils. We evaluated evobrutinib in preclinical models of RA and SLE and characterized the relationship between BTK occupancy and inhibition of disease activity. In mouse models of RA and SLE, orally administered evobrutinib displayed robust efficacy, as demonstrated by reduction of disease severity and histological damage. In the SLE model, evobrutinib inhibited B cell activation, reduced autoantibody production and plasma cell numbers, and normalized B and T cell subsets. In the RA model, efficacy was achieved despite failure to reduce autoantibodies. Pharmacokinetic/pharmacodynamic modeling showed that mean BTK occupancy in blood cells of 80% was linked to near-complete disease inhibition in both RA and SLE mouse models. In addition, evobrutinib inhibited mast cell activation in a passive cutaneous anaphylaxis model. Thus, evobrutinib achieves efficacy by acting both on B cells and innate immune cells. Taken together, our data show that evobrutinib is a promising molecule for the chronic treatment of B cell-driven autoimmune disorders.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Artritis Reumatoide/tratamiento farmacológico , Linfocitos B/inmunología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Piperidinas/farmacología , Pirimidinas/farmacología , Agammaglobulinemia Tirosina Quinasa/inmunología , Animales , Artritis Reumatoide/enzimología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Linfocitos B/enzimología , Linfocitos B/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Lupus Eritematoso Sistémico/enzimología , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Ratones , Células U937RESUMEN
Bruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible BTK inhibitor targeting Cys481 within the ATP-binding pocket, for example ibrutinib, has been applied in the treatment of B-cell malignancies. Starting from a fragment hit, we discovered a novel series of potent covalent irreversible BTK inhibitors that occupy selectivity pocket of the active site of the BTK kinase domain. Guided by X-ray structures and a fragment-based drug design (FBDD) approach, we generated molecules showing comparable cellular potency to ibrutinib and higher kinome selectivity against undesirable off-targets like EGFR.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-ActividadRESUMEN
Bruton's tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible Btk inhibitors targeting Cys481 within the ATP-binding pocket have been applied in the treatment of B-cell malignancies. Starting from a fragment, we discovered a novel series of potent covalent irreversible Btk inhibitors that bear N-linked groups occupying the solvent accessible pocket (SAP) of the active site of the Btk kinase domain. The hit molecules, however, displayed high P-gp mediated efflux ratio (ER) and poor A-B permeability in Caco-2 assay. By decreasing tPSA, installing steric hindrance and adjusting clogP, one top molecule 9 was discovered, which showed a 99% decrease in efflux ratio and a 90-fold increase in A-B permeability compared to hit molecule 1.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Niacinamida/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/química , Animales , Células CACO-2 , Dominio Catalítico , Humanos , Ratones , Estructura Molecular , Niacinamida/análogos & derivados , Niacinamida/síntesis química , Niacinamida/farmacocinética , Permeabilidad , Piperidinas , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirazoles/farmacología , Pirimidinas/farmacologíaRESUMEN
Btk is an attractive target for the treatment of a range of Bcell malignancies as well as several autoimmune diseases such as murine lupus and rheumatoid arthritis. Several covalent irreversible inhibitors of Btk are currently in development including ibrutinib which was approved for treatment of B-cell malignancies. Herein, we describe our efforts using X-ray guided structure based design (SBD) to identify a novel chemical series of covalent Btk inhibitors. The resulting pyridine carboxamides were potent and selective inhibitors of Btk having excellent enzymatic and cellular inhibitory activity.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Adenina/análogos & derivados , Administración Oral , Animales , Células CACO-2 , Humanos , Ratones , Estructura Molecular , Piperidinas , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirazoles/farmacología , Piridinas/administración & dosificación , Piridinas/síntesis química , Piridinas/química , Pirimidinas/administración & dosificación , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-ActividadRESUMEN
Bruton's tyrosine kinase (Btk) is expressed in a variety of hematopoietic cells. Btk has been demonstrated to regulate signaling downstream of the B-cell receptor (BCR), Fc receptors (FcRs), and toll-like receptors. It has become an attractive drug target because its inhibition may provide significant efficacy by simultaneously blocking multiple disease mechanisms. Consequently, a large number of Btk inhibitors have been developed. These compounds have diverse binding modes, and both reversible and irreversible inhibitors have been developed. Reported herein, we have tested nine Btk inhibitors and characterized on a molecular level how their interactions with Btk define their ability to block different signaling pathways. By solving the crystal structures of Btk inhibitors bound to the enzyme, we discovered that the compounds can be classified by their ability to trigger sequestration of Btk residue Y551. In cells, we found that sequestration of Y551 renders it inaccessible for phosphorylation. The ability to sequester Y551 was an important determinant of potency against FcεR signaling as Y551 sequestering compounds were more potent for inhibiting basophils and mast cells. This result was true for the inhibition of FcγR signaling as well. In contrast, Y551 sequestration was less a factor in determining potency against BCR signaling. We also found that Btk activity is regulated differentially in basophils and B cells. These results elucidate important determinants for Btk inhibitor potency against different signaling pathways and provide insight for designing new compounds with a broader inhibitory profile that will likely result in greater efficacy.
Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores Fc/metabolismo , Transducción de Señal/efectos de los fármacos , Tirosina/metabolismo , Agammaglobulinemia Tirosina Quinasa , Línea Celular Tumoral , Análisis por Conglomerados , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Humanos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismoRESUMEN
Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.
Asunto(s)
Lupus Eritematoso Sistémico/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa , Animales , Artritis/tratamiento farmacológico , Artritis/patología , Autoanticuerpos/sangre , Modelos Animales de Enfermedad , Femenino , Articulaciones del Pie/efectos de los fármacos , Articulaciones del Pie/patología , Humanos , Inmunosupresores , Interferón Tipo I/inmunología , Riñón/efectos de los fármacos , Riñón/patología , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Nefritis/tratamiento farmacológico , Nefritis/patología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Proteinuria/tratamiento farmacológico , Proteinuria/patología , Terpenos , Receptor Toll-Like 7/inmunologíaRESUMEN
Several potent Aurora kinase inhibitors derived from 5H-benzo[c][1,8]naphthyridin-6-one scaffold were identified. A crystal structure of Aurora kinase A in complex with an initial hit revealed a binding mode of the inhibitor within the ATP binding site and provided insight for structure-guided compound optimization. Subsequent SAR campaign provided a potent and selective pan Aurora inhibitor, which demonstrated potent target modulation and antiproliferative effects in the pancreatic cell line, MIAPaCa-2. Furthermore, this compound inhibited phosphorylation of histone H3 (pHH3) in mouse bone morrow upon oral administration, which is consistent with inhibition of Aurora kinase B activity.
Asunto(s)
Aurora Quinasas/antagonistas & inhibidores , Naftiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Animales , Aurora Quinasas/metabolismo , Línea Celular Tumoral , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Ratones , Modelos Moleculares , Estructura Molecular , Naftiridinas/administración & dosificación , Naftiridinas/síntesis química , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/síntesis química , Relación Estructura-ActividadRESUMEN
Wee1 is a tyrosine kinase that is highly expressed in several cancer types. Wee1 inhibition can lead to suppression of tumor cell proliferation and sensitization of cells to the effects of DNA-damaging agents. AZD1775 is a nonselective Wee1 inhibitor for which myelosuppression has been observed as a dose-limiting toxicity. We have applied structure-based drug design (SBDD) to rapidly generate highly selective Wee1 inhibitors that demonstrate better selectivity than AZD1775 against PLK1, which is known to cause myelosuppression (including thrombocytopenia) when inhibited. While selective Wee1 inhibitors described herein still achieved in vitro antitumor efficacy, thrombocytopenia was still observed in vitro.
RESUMEN
Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and typeâ I interferon.
Asunto(s)
Bioensayo/métodos , Piperazinas/química , Inhibidores de Proteínas Quinasas/análisis , Piridinas/química , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Animales , Biotina/química , Ratones , Modelos Animales , Estructura Molecular , Piperazinas/síntesis química , Inhibidores de Proteínas Quinasas/metabolismo , Piridinas/síntesis química , Relación Estructura-ActividadRESUMEN
Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity. Evobrutinib displayed sufficient preclinical pharmacokinetic and pharmacodynamic characteristics which allowed for in vivo evaluation in efficacy models. Moreover, the high selectivity of evobrutinib for BTK over epidermal growth factor receptor and other Tec family kinases suggested a low potential for off-target related adverse effects. Clinical investigation of evobrutinib is ongoing in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.