Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600345

RESUMEN

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Asunto(s)
Neoplasias del Colon , Empalme del ARN , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Empalme del ARN/efectos de los fármacos , Fosforilación , Línea Celular Tumoral , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Proteína Fosfatasa 2/metabolismo , Inhibidores Enzimáticos/farmacología
2.
Nucleic Acids Res ; 50(16): 9490-9504, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971611

RESUMEN

Protein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, ß and γ subunits that specifically associate into a heterotrimeric form eEF1B(αßγ)3. As both the eEF1Bα and eEF1Bß proteins have structurally conserved GEF domains, their total number within the complex is equal to six. Such, so far, unique structural assembly of the guanine-nucleotide exchange factors within a stable complex may be considered as a 'GEF hub' that ensures efficient maintenance of the translationally active GTP-bound conformation of eEF1A in higher eukaryotes.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Factor 1 de Elongación Peptídica , Humanos , Factor 1 de Elongación Peptídica/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Biosíntesis de Proteínas , Nucleótidos/metabolismo , Guanina
3.
Sci Adv ; 8(46): eadd9468, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36383655

RESUMEN

Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.

4.
Wiley Interdiscip Rev RNA ; 12(2): e1622, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33145994

RESUMEN

Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.


Asunto(s)
Nucleotidiltransferasas , ARN , Animales , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Poliadenilación , ARN/genética , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-30397099

RESUMEN

In eukaryotes, almost all RNA species are processed at their 3' ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.


Asunto(s)
Ratones/genética , Nucleotidiltransferasas/genética , ARN/metabolismo , Ratas/genética , Animales , Ratones/metabolismo , Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , Ratas/metabolismo
6.
Nat Commun ; 8(1): 619, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931820

RESUMEN

FAM46C is one of the most frequently mutated genes in multiple myeloma. Here, using a combination of in vitro and in vivo approaches, we demonstrate that FAM46C encodes an active non-canonical poly(A) polymerase which enhances mRNA stability and gene expression. Reintroduction of active FAM46C into multiple myeloma cell lines, but not its catalytically-inactive mutant, leads to broad polyadenylation and stabilization of mRNAs strongly enriched with those encoding endoplasmic reticulum-targeted proteins and induces cell death. Moreover, silencing of FAM46C in multiple myeloma cells expressing WT protein enhance cell proliferation. Finally, using a FAM46C-FLAG knock-in mouse strain, we show that the FAM46C protein is strongly induced during activation of primary splenocytes and that B lymphocytes isolated from newly generated FAM46C KO mice proliferate faster than those isolated from their WT littermates. Concluding, our data clearly indicate that FAM46C works as an onco-suppressor, with the specificity for B-lymphocyte lineage from which multiple myeloma originates. FAM46C is one of the most frequently mutated genes in multiple myeloma (MM), but its molecular function remains unknown. Here the authors show that FAM46C is a poly(A) polymerase and that loss of function of FAM46C drives multiple myeloma through the destabilisation of ER response transcripts.


Asunto(s)
Mieloma Múltiple/genética , Polinucleotido Adenililtransferasa/genética , Proteínas/genética , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , Animales , Linfocitos B , Muerte Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Retículo Endoplásmico/metabolismo , Expresión Génica , Técnicas de Sustitución del Gen , Silenciador del Gen , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Mutación , Nucleotidiltransferasas , Bazo/citología
7.
Cell Cycle ; 15(8): 1060-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26939941

RESUMEN

The ribosomal GTPase associated center constitutes the ribosomal area, which is the landing platform for translational GTPases and stimulates their hydrolytic activity. The ribosomal stalk represents a landmark structure in this center, and in eukaryotes is composed of uL11, uL10 and P1/P2 proteins. The modus operandi of the uL11 protein has not been exhaustively studied in vivo neither in prokaryotic nor in eukaryotic cells. Using a yeast model, we have brought functional insight into the translational apparatus deprived of uL11, filling the gap between structural and biochemical studies. We show that the uL11 is an important element in various aspects of 'ribosomal life'. uL11 is involved in 'birth' (biogenesis and initiation), by taking part in Tif6 release and contributing to ribosomal subunit-joining at the initiation step of translation. uL11 is particularly engaged in the 'active life' of the ribosome, in elongation, being responsible for the interplay with eEF1A and fidelity of translation and contributing to a lesser extent to eEF2-dependent translocation. Our results define the uL11 protein as a critical GAC element universally involved in trGTPase 'productive state' stabilization, being primarily a part of the ribosomal element allosterically contributing to the fidelity of the decoding event.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Mutación/genética , Polirribosomas/metabolismo , Subunidades de Proteína/metabolismo , Procesamiento Postranscripcional del ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA