Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396818

RESUMEN

Chronic exposure to manganese (Mn) leads to its accumulation in the central nervous system (CNS) and neurotoxicity with not well-known mechanisms. We investigated the involvement of matrix metalloproteinase (MMP)-2 and -9 in Mn neurotoxicity in an in vivo model of rats treated through an intraperitoneal injection, for 4 weeks, with 50 mg/kg of MnCl2 in the presence or in the absence of 30 mg/kg of resveratrol (RSV). A loss of weight was observed in Mn-treated rats compared with untreated and RSV-treated rats. A progressive recovery of body weight was detected in rats co-treated with Mn and RSV. The analysis of brain homogenates indicated that RSV counteracted the Mn-induced increase in MMP-9 levels and reactive oxygen species production as well as the Mn-induced decrease in superoxide dismutase activity and glutathione content. In conclusion, Mn exposure, resulting in MMP-9 induction with mechanisms related to oxidative stress, represents a risk factor for the development of CNS diseases.


Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Resveratrol , Animales , Ratas , Manganeso/toxicidad , Metaloproteinasa 9 de la Matriz/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Estrés Oxidativo , Resveratrol/farmacología
2.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675538

RESUMEN

Polyphenols, the main antioxidants of diet, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of four polyphenolic compounds on ROS production and on the levels of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of breast cancer. THP-1 differentiated macrophages were activated by LPS and simultaneously treated with different doses of a green tea extract (GTE), resveratrol (RSV), curcumin (CRC) and an olive fruit extract (oliplus). By using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, we found that all of the tested compounds showed antioxidant activity in vitro. In addition, GTE, RSV and CRC were able to counteract ROS production induced by H2O2 in THP-1 cells. As assessed by a zymographic analysis of THP-1 supernatants and by an "in-gel zymography" of a pool of sera from patients with breast cancer, the antioxidant compounds used in this study inhibited both the activity and expression of MMP-2 and MMP-9 through different mechanisms related to their structures and to their ability to scavenge ROS. The results of this study suggest that the used antioxidants could be promising agents for the prevention and complementary treatment of breast cancer and other diseases in which MMPs play a pivotal role.


Asunto(s)
Antioxidantes , Neoplasias de la Mama , Macrófagos , Femenino , Humanos , Antioxidantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Curcumina/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Células THP-1
3.
Molecules ; 28(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903422

RESUMEN

In this study the antioxidant and neuroprotective activity of an enriched polysaccharide fraction (EPF) obtained from the fruiting body of cultivated P. eryngii was evaluated. Proximate composition (moisture, proteins, fat, carbohydrates and ash) was determined using the AOAC procedures. The EPF was extracted by using, in sequence, hot water and alkaline extractions followed by deproteinization and precipitation with cold ethanol. Total α- and ß-glucans were quantified using the Megazyme International Kit. The results showed that this procedure allows a high yield of polysaccharides with a higher content of (1-3; 1-6)-ß-D-glucans. The antioxidant activity of EPF was detected from the total reducing power, DPPH, superoxide, hydroxyl and nitric oxide radical scavenging activities. The EPF was found to scavenge DPPH, superoxide, hydroxyl and nitric oxide radicals with a IC50 values of 0.52 ± 0.02, 1.15 ± 0.09, 0.89 ± 0.04 and 2.83 ± 0.16 mg/mL, respectively. As assessed by the MTT assay, the EPF was biocompatible for DI-TNC1 cells in the range of 0.006-1 mg/mL and, at concentrations ranging from 0.05 to 0.2 mg/mL, significantly counteracted H2O2-induced reactive oxygen species production. This study demonstrated that polysaccharides extracted from P. eryngii might be used as functional food to potentiate the antioxidant defenses and to reduce oxidative stress.


Asunto(s)
Agaricales , Pleurotus , Antioxidantes/química , Agaricales/metabolismo , Superóxidos/metabolismo , Óxido Nítrico/metabolismo , Peróxido de Hidrógeno/metabolismo , Pleurotus/química , Polisacáridos/química , Radical Hidroxilo/metabolismo
4.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233234

RESUMEN

In the direct-acting antiviral (DAA) era, it is important to understand the immunological changes after HCV eradication in HCV monoinfected (mHCV) and in HIV/HCV coinfected (HIV/HCV) patients. In this study, we analyzed sub-populations of monocytes, dendritic cells (DCs), T-lymphocytes and inflammatory biomarkers following initiation of DAA in 15 mHCV and 16 HIV/HCV patients on effective antiretroviral therapy at baseline and after sustained virological response at 12 weeks (SVR12). Fifteen age- and sex-matched healthy donors (HD) were enrolled as a control group. Activated CD4+ and CD8+ T-lymphocytes, mDCs, pDCs, MDC8 and classical, non-classical and intermediate monocytes were detected using flow cytometry. IP-10, sCD163 and sCD14 were assessed by ELISA while matrix metalloproteinase-2 (MMP-2) was measured by zymography. At baseline, increased levels of IP-10, sCD163 and MMP-2 were found in both HIV/HCV and mHCV patients compared to HD, whereas sCD14 increased only in HIV/HCV patients. After therapy, IP-10, sCD163 and sCD14 decreased, whereas MMP-2 persistently elevated. At baseline, activated CD8+ T-cells were high in HIV/HCV and mHCV patients compared to HD, with a decrease at SVR12 only in HIV/HCV patients. Activated CD4+ T-cells were higher in HIV/HCV patients without modification after DAAs therapy. These results suggest complex interactions between both viruses and the immune system, which are only partially reversed by DAA treatment.


Asunto(s)
Coinfección , Infecciones por VIH , Hepatitis C Crónica , Antivirales/uso terapéutico , Biomarcadores , Quimiocina CXCL10 , Coinfección/tratamiento farmacológico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Hepacivirus , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Receptores de Lipopolisacáridos , Metaloproteinasa 2 de la Matriz
5.
Molecules ; 27(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36500238

RESUMEN

Cardiovascular diseases represent the main cause of death. A common feature of cardiovascular disease is thrombosis resulting from intravascular accumulation of fibrin. In the last years, several fibrinolytic enzymes have been discovered in many medicinal or edible mushrooms as potential new antithrombotic agents. This study aimed to compare the fibrin(ogen)olytic activity of crude extracts from the fruiting bodies of four cultivated edible mushrooms: Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, and Agrocybe aegerita. Fibrin(ogen)olytic activity was assessed by fibrin plate, spectrophotometric assay and electrophoretic analysis (SDS-PAGE and zymography). The highest activity was detected for P. ostreatus followed by P. eryngii, L. edodes and A. aegerita. Results indicated that enzymes exhibited maximum activity at pH 6-7 and 30-40 °C, respectively. Enzyme activity was inhibited by serine and metalloprotease inhibitors. We proposed a new index called the Specific Fibrin(ogen)olytic Index (SFI), which allows specification of the proportion of the total proteolytic capacity due to the fibrin(ogen)olytic activity. These data suggest that the extracts from fruiting bodies or powdered mushrooms can be used as functional ingredients for the development of new functional foods that may act as thrombolytic agents responding, at the same time, to the increasing demand for safe, healthy and sustainable food.


Asunto(s)
Fibrina , Trombosis , Humanos , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Trombosis/tratamiento farmacológico , Péptido Hidrolasas
6.
Inflammopharmacology ; 29(2): 561-571, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33196947

RESUMEN

Isothiocyanates (ITCs), present as glucosinolate precursors in cruciferous vegetables, have shown anti-inflammatory, antioxidant and anticarcinogenic activities. Here, we compared the effects of three different ITCs on ROS production and on the expression of matrix metalloproteinase (MMP)-2 and -9, which represent important pathogenetic factors of various neurological diseases. Primary cultures of rat astrocytes were activated by LPS and simultaneously treated with different doses of Allyl isothiocyanate (AITC), 2-Phenethyl isothiocyanate (PEITC) and 2-Sulforaphane (SFN). Results showed that SFN and PEITC were able to counteract ROS production induced by H2O2. The zymographic analysis of cell culture supernatants evidenced that PEITC and SFN were the most effective inhibitors of MMP-9, whereas, only SFN significantly inhibited MMP-2 activity. PCR analysis showed that all the ITCs used significantly inhibited both MMP-2 and MMP-9 expression. The investigation on the mitogen-activated protein kinase (MAPK) signaling pathway demonstrated that ITCs modulate MMP transcription by inhibition of extracellular-regulated protein kinase (ERK) activity. Results of this study suggest that ITCs could be promising nutraceutical agents for the prevention and complementary treatment of neurological diseases associated with MMP involvement.


Asunto(s)
Isotiocianatos/farmacología , Fármacos Neuroprotectores/farmacología , Sulfóxidos/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inflamación/tratamiento farmacológico , Inflamación/patología , Isotiocianatos/administración & dosificación , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sulfóxidos/administración & dosificación
7.
J Neurochem ; 144(3): 271-284, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210076

RESUMEN

There is little information available on the possible toxic effects that antiretroviral (ARV) drugs used for the treatment of human immunodeficiency virus (HIV)-infected subjects, may have on the central nervous system (CNS) resident cells. Moreover, it remains unclear whether the efficacy of the ARV drugs may also be due to their ability to exert extravirological effects on factors responsible for the development of HIV brain injury, e.g., matrix metalloproteinases (MMPs). This study investigates the toxicity of three different ARV drugs and on their ability to modulate levels and expression of gelatinases A (MMP-2) and B (MMP-9) in astrocytes. Primary cultures of rat astrocytes were activated by exposure to lipopolysaccaride (LPS) and simultaneously treated with darunavir, maraviroc, or raltegravir, used alone or in combination. Among the tested drugs, maraviroc was the less toxic for astrocytes. At toxic concentration (TC50 ), the studied drugs induced the production of reactive oxygen species (ROS), suggesting that the oxidative stress may represent a mechanism of ARV toxicity. As assessed by gelatin zymography and RT-PCR, the single antiretroviral drugs reduced levels and expression of both MMP-2 and MMP-9 through the inhibition of the signaling transduction pathway of extracellular signal-regulated kinase1/2, which is involved in the regulation of MMP-9 gene. A synergistic inhibition of MMP-2 and MMP-9 was observed with combinations of the studied ARV drugs. The present results indicate that maraviroc, darunavir, and raltegravir, through their ability to inhibit MMP-2 and MMP-9 at doses non-toxic for astrocytes, might have a great potential for the management of HIV-associated neurological complications.


Asunto(s)
Antirretrovirales/toxicidad , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Supervivencia Celular , Darunavir/toxicidad , Femenino , Masculino , Maraviroc/toxicidad , Cultivo Primario de Células , Raltegravir Potásico/toxicidad , Ratas Wistar , Especies Reactivas de Oxígeno
8.
Int J Mol Sci ; 17(4): 455, 2016 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-27023536

RESUMEN

An imbalance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) may contribute to liver fibrosis in patients with hepatitis C (HCV) infection. We measured the circulating levels of different MMPs and TIMPs in HCV monoinfected and HIV/HCV coinfected patients and evaluated the potential for anti-HCV therapy to modulate MMP and TIMP levels in HCV subjects. We analyzed 83 plasma samples from 16 HCV monoinfected patients undergoing dual or triple anti-HCV therapy, 15 HIV/HCV coinfected patients with undetectable HIV load, and 10 healthy donors (HD). Levels of MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, TIMP-1, and TIMP-2 were measured by a SearchLight Multiplex Immunoassay Kit. MMP-2 and MMP-9 were the highest expressed MMPs among all the analyzed samples and their levels significantly increased in HCV monoinfected and HIV/HCV coinfected subjects compared to HD. TIMP-1 levels were significantly higher in HCV and HIV/HCV subjects compared to HD and were correlated with liver stiffness. These findings raise the possibility of using circulating TIMP-1 as a non-invasive marker of liver fibrosis in HCV infection. A longitudinal study demonstrated that MMP-9 levels significantly decreased (40% reduction from baseline) in patients receiving dual as well as triple direct-acting antivirals (DAA) anti-HCV therapy, which had no effect on MMP-2, TIMP-1, and TIMP-2. As the dysregulation of MMP-2 and MMP-9 may reflect inflammatory processes in the liver, the decrease of MMP-9 following HCV protease inhibitor treatment suggests a positive effect on the reduction of liver inflammation.


Asunto(s)
Infecciones por VIH/complicaciones , Hepatitis C/tratamiento farmacológico , Cirrosis Hepática/patología , Metaloproteinasas de la Matriz/sangre , Inhibidores de Proteasas/uso terapéutico , Inhibidores Tisulares de Metaloproteinasas/sangre , Adulto , Anciano , Antivirales/uso terapéutico , Femenino , Hepatitis C/complicaciones , Humanos , Inmunoensayo , Cirrosis Hepática/complicaciones , Estudios Longitudinales , Masculino , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Inhibidores Tisulares de Metaloproteinasas/metabolismo
9.
J Cell Mol Med ; 18(2): 242-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24616914

RESUMEN

The matrix metalloproteinases (MMPs) gelatinase A (MMP-2) and gelatinase B (MMP-9) are mediators of brain injury in multiple sclerosis (MS) and valuable biomarkers of disease activity. We applied bidimensional zymography (2-DZ) as an extension of classic monodimensional zymography (1-DZ) to analyse the complete pattern of isoforms and post-translational modifications of both MMP-9 and MMP-2 present in the sera of MS patients. The enzymes were separated on the basis of their isoelectric points (pI) and apparent molecular weights (Mw) and identified both by comparison with standard enzyme preparations and by Western blot analysis. Two MMP-2 isoforms, and at least three different isoforms and two different states of organization of MMP-9 (the multimeric MMP-9 and the N-GAL-MMP-9 complex) were observed. In addition, 2-DZ revealed for the first time that all MMP-9 and MMP-2 isoforms actually exist in the form of charge variants: four or five variants in the NGAL complex, more charge variants in the case of MMP-9; and five to seven charge variants for MMP-2. Charge variants were also observed in recombinant enzymes and, after concentration, also in sera from healthy individuals. Sialylation (MMP-9) and phosphorylation (MMP-2) contributed to molecular heterogeneity. The detection of charge variants of MMP-9 and MMP-2 in MS serum samples illustrates the power of 2-DZ and demonstrates that in previous studies MMP mixtures, rather than single molecules, were analysed. These observations open perspectives for better diagnosis and prognosis of many diseases and need to be critically interpreted when applying other methods for MS and other diseases.


Asunto(s)
Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Esclerosis Múltiple/enzimología , Procesamiento Proteico-Postraduccional , Western Blotting , Estudios de Casos y Controles , Electroforesis en Gel de Poliacrilamida , Pruebas de Enzimas , Femenino , Humanos , Isoenzimas/sangre , Isoenzimas/genética , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/genética , Fosforilación , Ácidos Siálicos/metabolismo , Electricidad Estática
10.
J Biol Chem ; 288(40): 29069-80, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23946482

RESUMEN

FAD is a redox cofactor ensuring the activity of many flavoenzymes mainly located in mitochondria but also relevant for nuclear redox activities. The last enzyme in the metabolic pathway producing FAD is FAD synthase (EC 2.7.7.2), a protein known to be localized both in cytosol and in mitochondria. FAD degradation to riboflavin occurs via still poorly characterized enzymes, possibly belonging to the NUDIX hydrolase family. By confocal microscopy and immunoblotting experiments, we demonstrate here the existence of FAD synthase in the nucleus of different experimental rat models. HPLC experiments demonstrated that isolated rat liver nuclei contain ∼300 pmol of FAD·mg(-1) protein, which was mainly protein-bound FAD. A mean FAD synthesis rate of 18.1 pmol·min(-1)·mg(-1) protein was estimated by both HPLC and continuous coupled enzymatic spectrophotometric assays. Rat liver nuclei were also shown to be endowed with a FAD pyrophosphatase that hydrolyzes FAD with an optimum at alkaline pH and is significantly inhibited by adenylate-containing nucleotides. The coordinate activity of these FAD forming and degrading enzymes provides a potential mechanism by which a dynamic pool of flavin cofactor is created in the nucleus. These data, which significantly add to the biochemical comprehension of flavin metabolism and its subcellular compartmentation, may also provide the basis for a more detailed comprehension of the role of flavin homeostasis in biologically and clinically relevant epigenetic events.


Asunto(s)
Núcleo Celular/metabolismo , Flavina-Adenina Dinucleótido/biosíntesis , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Homeostasis , Humanos , Hidrólisis , Immunoblotting , Hígado/citología , Hígado/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Nucleotidiltransferasas/metabolismo , Ratas , Ratas Wistar
11.
J Anim Sci ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954519

RESUMEN

The transition period is a critical metabolic phase for dairy ruminants, especially those with high production levels. In spite of this, little is still known about dairy water buffalo. The aim of this study was to evaluate the effect of a commercial feed additive based on diatomaceous earth and hydrolyzed yeasts on health status, milk quality and immune response of buffalo cows during the transition period. Eighty healthy Water buffaloes (Bubalus bubalis) of Italian Mediterranean breed were included in the trial. They were subdivided in two groups: one group received the additive (n = 40) while the control group (n=40) received a placebo. The trial lasted 120 days, from 60 days before calving to 60 days in milk. Blood samples were collected from each buffalo at -60d (60 days from the expected calving), -30 d, 0 d (calving), +15 d, +30 d, and +60 d (respectively, i.e., 15, 30 and 60 days in milking). The biochemical as well as the oxidative profile, and the antioxidant power and enzymatic activity were evaluated in the samples obtained. Moreover, acute phase proteins, reactive proteins and Interleukine plasma levels were determined. Peripheral blood mononuclear cells (PBMC) and monocytes were isolated and viability, reactive oxygen species (ROS) and reactive nitrogen species (RNS) were measured on PMBC and monocytes. The introduction of additives enhanced the total antioxidant capacity and enzyme activity, while no differences were observed in oxidation products throughout the trial. Additionally, it significantly reduced the synthesis of ROS in polymorphonuclear cells, supporting a potential positive response in animals experiencing inflammation. The impact of oxidation on the products was not evident. Despite higher enzyme levels in plasma, this did not necessarily correspond to significantly increased enzymatic activity, but rather indicated a higher potential. From these results, it was evident that the transition period in buffaloes differs notably from what reported in literature for cows, probably due to the absence of common postpartum production diseases in dairy cows and lower metabolic challenges linked to lower milk production in buffaloes. Few parameters exhibited notable changes during the transition period in buffaloes, notably certain antioxidant enzymes, PBMC viability, PBMC ROS production, and Hp levels.

12.
Exp Gerontol ; : 112485, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876448

RESUMEN

The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.

13.
Eur J Med Chem ; 274: 116511, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38820854

RESUMEN

A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Diseño de Fármacos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Humanos , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Butirilcolinesterasa/metabolismo , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación de Dinámica Molecular , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Línea Celular Tumoral
14.
Eur J Med Chem ; 269: 116266, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490063

RESUMEN

In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Neuroprotección , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad
15.
Nutrients ; 15(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37111131

RESUMEN

The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.


Asunto(s)
Agaricales , Enfermedades Neurodegenerativas , Humanos , Anciano , Antioxidantes/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Estrés Oxidativo , Vitaminas/uso terapéutico
16.
Cells ; 12(4)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831321

RESUMEN

BACKGROUND AND METHODS: Severe COVID-19 is known to induce neurological damage (NeuroCOVID), mostly in aged individuals, by affecting brain-derived neurotrophic factor (BDNF), matrix metalloproteinases (MMP) 2 and 9 and the neurofilament light chain (NFL) pathways. Thus, the aim of this pilot study was to investigate BDNF, MMP-2, MMP-9, and NFL in the serum of aged men affected by COVID-19 at the beginning of the hospitalization period and characterized by different outcomes, i.e., attending a hospital ward or an intensive care unit (ICU) or with a fatal outcome. As a control group, we used a novelty of the study, unexposed age-matched men. We also correlated these findings with the routine blood parameters of the recruited individuals. RESULTS: We found in COVID-19 individuals with severe or lethal outcomes disrupted serum BDNF, NFL, and MMP-2 presence and gross changes in ALT, GGT, LDH, IL-6, ferritin, and CRP. We also confirmed and extended previous data, using ROC analyses, showing that the ratio MMPs (2 and 9) versus BDNF and NFL might be a useful tool to predict a fatal COVID-19 outcome. CONCLUSIONS: Serum BDNF and NFL and/or their ratios with MMP-2 and MMP-9 could represent early predictors of NeuroCOVID in aged men.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , COVID-19 , Masculino , Humanos , Anciano , Metaloproteinasa 9 de la Matriz , Metaloproteinasa 2 de la Matriz , Filamentos Intermedios , Proyectos Piloto , Morbilidad
17.
Eur J Med Chem ; 250: 115169, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36753881

RESUMEN

A set of twenty-five thioxanthene-9-one and xanthene-9-one derivatives, that were previously shown to inhibit cholinesterases (ChEs) and amyloid ß (Aß40) aggregation, were evaluated for the inhibition of tau protein aggregation. All compounds exhibited a good activity, and eight of them (5-8, 10, 14, 15 and 20) shared comparable low micromolar inhibitory potency versus Aß40 aggregation and human acetylcholinesterase (AChE), while inhibiting human butyrylcholinesterase (BChE) even at submicromolar concentration. Compound 20 showed outstanding biological data, inhibiting tau protein and Aß40 aggregation with IC50 = 1.8 and 1.3 µM, respectively. Moreover, at 0.1-10 µM it also exhibited neuroprotective activity against tau toxicity induced by okadoic acid in human neuroblastoma SH-SY5Y cells, that was comparable to that of estradiol and PD38. In preliminary toxicity studies, these interesting results for compound 20 are somewhat conflicting with a narrow safety window. However, compound 10, although endowed with a little lower potency for tau and Aß aggregation inhibition additionally demonstrated good inhibition of ChEs and rather low cytotoxicity. Compound 4 is also worth of note for its high potency as hBChE inhibitor (IC50 = 7 nM) and for the three order of magnitude selectivity versus hAChE. Molecular modelling studies were performed to explain the different behavior of compounds 4 and 20 towards hBChE. The observed balance of the inhibitory potencies versus the relevant targets indicates the thioxanthene-9-one derivatives as potential MTDLs for AD therapy, provided that the safety window will be improved by further structural variations, currently under investigation.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/metabolismo , Péptidos beta-Amiloides/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Estructura Molecular , Relación Estructura-Actividad , Neuroblastoma/tratamiento farmacológico , Diseño de Fármacos , Simulación del Acoplamiento Molecular
18.
Eur J Med Chem ; 255: 115352, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37178666

RESUMEN

Following a hybridization strategy, a series of 5-substituted-1H-indazoles were designed and evaluated in vitro as inhibitors of human monoamine oxidase (hMAO) A and B. Among structural modifications, the bioisostere-based introduction of 1,2,4-oxadiazole ring returned the most potent and selective human MAO B inhibitor (compound 20, IC50 = 52 nM, SI > 192). The most promising inhibitors were studied in cell-based neuroprotection models of SH-SY5Y and astrocytes line against H2O2. Moreover, preliminary drug-like features (aqueous solubility at pH 7.4; hydrolytic stability at acidic and neutral pH) were assessed for selected 1,2,4-oxadiazoles and compared to amide analogues through RP-HPLC methods. Molecular docking simulations highlighted the crucial role of molecular flexibility in providing a better shape complementarity for compound 20 within MAO B enzymatic cleft than rigid analogue 18. Enzymatic kinetics analysis along with thermal stability curves (Tm shift = +2.9 °C) provided clues of a tight-binding mechanism for hMAO B inhibition by 20.


Asunto(s)
Neuroblastoma , Neuroprotección , Humanos , Simulación del Acoplamiento Molecular , Indazoles/farmacología , Indazoles/química , Oxadiazoles/farmacología , Peróxido de Hidrógeno , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
19.
Biomolecules ; 13(7)2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37509076

RESUMEN

Background: The aim of the study was to longitudinally evaluate the association between MMP-2, MMP-9, TIMP-1 and chest radiological findings in COVID-19 patients. Methods: COVID-19 patients were evaluated based on their hospital admission (baseline) and three months after hospital discharge (T post) and were stratified into ARDS and non-ARDS groups. As a control group, healthy donors (HD) were enrolled. Results: At the baseline, compared to HD (n = 53), COVID-19 patients (n = 129) showed higher plasma levels of MMP-9 (p < 0.0001) and TIMP-1 (p < 0.0001) and the higher plasma activity of MMP-2 (p < 0.0001) and MMP-9 (p < 0.0001). In the ARDS group, higher plasma levels of MMP-9 (p = 0.0339) and TIMP-1 (p = 0.0044) and the plasma activity of MMP-2 (p = 0.0258) and MMP-9 (p = 0.0021) compared to non-ARDS was observed. A positive correlation between the plasma levels of TIMP-1 and chest computed tomography (CT) score (ρ = 0.2302, p = 0.0160) was observed. At the T post, a reduction in plasma levels of TIMP-1 (p < 0.0001), whereas an increase in the plasma levels of MMP-9 was observed (p = 0.0088). Conclusions: The positive correlation between TIMP-1 with chest CT scores highlights its potential use as a marker of fibrotic burden. At T post, the increase in plasma levels of MMP-9 and the reduction in plasma levels of TIMP-1 suggested that inflammation and fibrosis resolution were still ongoing.


Asunto(s)
COVID-19 , Inhibidor Tisular de Metaloproteinasa-1 , Humanos , Metaloproteinasa 9 de la Matriz , Metaloproteinasa 2 de la Matriz , Inhibidor Tisular de Metaloproteinasa-2 , Metaloproteinasa 1 de la Matriz
20.
Cells ; 12(18)2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759493

RESUMEN

Background: Neurological symptoms (NS) in COVID-19 are related to both acute stage and long-COVID. We explored levels of brain injury biomarkers (NfL and GFAP) and myeloid activation marker (sCD163) and their implications on the CNS. Materials and Methods: In hospitalized COVID-19 patients plasma samples were collected at two time points: on hospital admission (baseline) and three months after hospital discharge (Tpost). Patients were stratified according to COVID-19 severity based on acute respiratory distress syndrome (ARDS) onset (severe and non-severe groups). A further stratification according to the presence of NS (with and without groups) at baseline (requiring a puncture lumbar for diagnostic purposes) and according to NS self-referred at Tpost was performed. Finally, cerebrospinal fluid (CSF) samples were collected from patients with NS present at baseline. Results: We enrolled 144 COVID-19 patients (62 female/82 male; median age [interquartile range, IQR]): 64 [55-77]) and 53 heathy donors (HD, 30 female/23 male; median age [IQR]: 64 [59-69]). At baseline, higher plasma levels of NfL, GFAP and sCD163 in COVID-19 patients compared to HD were observed (p < 0.0001, p < 0.0001 and p < 0.0001, respectively), especially in those with severe COVID-19 (p < 0.0001, p < 0.0001 and p < 0.0001, respectively). Patients with NS showed higher plasma levels of NfL, GFAP and sCD163 compared to those without (p = 0.0023, p < 0.0001 and 0.0370, respectively). At baseline, in COVID-19 patients with NS, positive correlations between CSF levels of sCD163 and CSF levels of NfL (ρ = 0.7536, p = 0.0017) and GFAP were observed (ρ = 0.7036, p = 0.0045). At Tpost, the longitudinal evaluation performed on 77 COVID-19 patients showed a significant reduction in plasma levels of NfL, GFAP and sCD163 compared to baseline (p < 0.0001, p < 0.0001 and p = 0.0413, respectively). Finally, at Tpost, in the severe group, higher plasma levels of sCD163 in patients with NS compared to those without were reported (p < 0.0001). Conclusions: High plasma levels of NfL, GFAP and sCD163 could be due to a proinflammatory systemic and brain response involving microglial activation and subsequent CNS damage. Our data highlight the association between myeloid activation and CNS perturbations.


Asunto(s)
COVID-19 , Humanos , Masculino , Femenino , COVID-19/complicaciones , Síndrome Post Agudo de COVID-19 , Encéfalo , Biomarcadores , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA