RESUMEN
Artificial reefs (ARs) have been globally deployed to enhance and restore coastal resource and ecosystems. Microorganisms play an essential role in marine ecosystems, while the knowledge regarding the impact of ARs on microecology is still limited, particularly data concerning the response of benthic microbial community to AR habitats. In this study, the seasonal dynamics of benthic microbial community in AR and adjacent non-artificial reef (NAR) areas surrounding Xiaoshi Island were investigated with high-throughput sequencing technology. The results revealed that the diversity and structure of microbial community between AR and NAR both displayed pronounced seasonal dynamics. There was a greater influence of season factors on microbial communities than that of habitat type. The microbial communities in AR and NAR habitats were characterized by a limited number of abundant taxa (ranging from 5 to 12 ASVs) with high relative abundance (8.35-25.53%) and numerous rare taxa (from 5994 to 12412 ASVs) with low relative abundance (11.91%-24.91%). Proteobacteria, Bacteroidota and Desulfobacterota were the common predominant phyla, with the relative abundances ranging from 50.94% to 76.76%. A total of 52 biomarkers were discovered, with 15, 4, 6, and 27 biomarkers identified in spring, summer, autumn and winter, respectively. Co-occurrence network analysis indicated that AR displayed a more complex interaction pattern and higher susceptibility to external disturbances. Furthermore, the neutral model and ßNTI analyses revealed that the assembly of microbial communities in both AR and NAR is significantly influenced by stochastic processes. This study could provide valuable insights into the impact of ARs construction on the benthic ecosystems and would greatly facilitate the development and implementation of the future AR projects.
Asunto(s)
Microbiota , Estaciones del Año , Bacteroidetes , BiomarcadoresRESUMEN
Objectives: The association between coffee consumption and the risk of metabolic syndrome (MetS) remains inconsistent. The aim of this study was to evaluate the association between coffee intake and components of MetS. Method: A cross-sectional survey including 1,719 adults was conducted in Guangdong, China. Data on age, gender, education level, marriage status, body mass index (BMI), current smoking and drinking status and breakfast habit, coffee consumption type, and daily servings were derived based on 2-day, 24-h recall. MetS were assessed according to the International Diabetes Federation definition. Multivariable logistic regression was conducted to examine the association between the coffee consumption type, daily servings, and the components of MetS. Results: Regardless of the coffee type, compared with non-coffee consumers, coffee consumers had higher odds ratios (ORs) of the elevated fasting blood glucose (FBG) in both men [OR: 3.590; 95% confidence intervals (CI): 2.891-4.457] and women (OR: 3.590; 95% CI: 2.891-4.457). In women, the risk of elevated blood pressure (BP) was 0.553 times (OR: 0.553; 95% CI: 0.372-0.821, P = 0.004) for people who drank total coffee > 1 serving/day than for non-coffee drinkers. Conclusion: In conclusion, regardless of type, coffee intake is associated with an increased prevalence of FBG in both men and women, but has a protective effect on hypertension only in women.