Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mult Scler ; 30(7): 767-784, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738527

RESUMEN

Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry out tasks that typically require human intelligence. In medicine, there has been a tremendous increase in AI applications thanks to increasingly powerful computers and the emergence of big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the central nervous system with a complex pathogenesis, a challenging diagnostic process strongly relying on magnetic resonance imaging (MRI) and a high and largely unexplained variability across patients. Therefore, AI applications in MS have the great potential of helping us better support the diagnosis, find markers for prognosis to eventually design more powerful randomised clinical trials and improve patient management in clinical practice and eventually understand the mechanisms of the disease. This topical review aims to summarise the recent advances in AI applied to MRI data in MS to illustrate its achievements, limitations and future directions.


Asunto(s)
Inteligencia Artificial , Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
2.
J Magn Reson Imaging ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803817

RESUMEN

BACKGROUND: The combination of anatomical MRI and deep learning-based methods such as convolutional neural networks (CNNs) is a promising strategy to build predictive models of multiple sclerosis (MS) prognosis. However, studies assessing the effect of different input strategies on model's performance are lacking. PURPOSE: To compare whole-brain input sampling strategies and regional/specific-tissue strategies, which focus on a priori known relevant areas for disability accrual, to stratify MS patients based on their disability level. STUDY TYPE: Retrospective. SUBJECTS: Three hundred nineteen MS patients (382 brain MRI scans) with clinical assessment of disability level performed within the following 6 months (~70% training/~15% validation/~15% inference in-house dataset) and 440 MS patients from multiple centers (independent external validation cohort). FIELD STRENGTH/SEQUENCE: Single vendor 1.5 T or 3.0 T. Magnetization-Prepared Rapid Gradient-Echo and Fluid-Attenuated Inversion Recovery sequences. ASSESSMENT: A 7-fold patient cross validation strategy was used to train a 3D-CNN to classify patients into two groups, Expanded Disability Status Scale score (EDSS) ≥ 3.0 or EDSS < 3.0. Two strategies were investigated: 1) a global approach, taking the whole brain volume as input and 2) regional approaches using five different regions-of-interest: white matter, gray matter, subcortical gray matter, ventricles, and brainstem structures. The performance of the models was assessed in the in-house and the independent external cohorts. STATISTICAL TESTS: Balanced accuracy, sensitivity, specificity, area under receiver operating characteristic (ROC) curve (AUC). RESULTS: With the in-house dataset, the gray matter regional model showed the highest stratification accuracy (81%), followed by the global approach (79%). In the external dataset, without any further retraining, an accuracy of 72% was achieved for the white matter model and 71% for the global approach. DATA CONCLUSION: The global approach offered the best trade-off between internal performance and external validation to stratify MS patients based on accumulated disability. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

3.
Mult Scler ; 28(8): 1209-1218, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34859704

RESUMEN

BACKGROUND: Active (new/enlarging) T2 lesion counts are routinely used in the clinical management of multiple sclerosis. Thus, automated tools able to accurately identify active T2 lesions would be of high interest to neuroradiologists for assisting in their clinical activity. OBJECTIVE: To compare the accuracy in detecting active T2 lesions and of radiologically active patients based on different visual and automated methods. METHODS: One hundred multiple sclerosis patients underwent two magnetic resonance imaging examinations within 12 months. Four approaches were assessed for detecting active T2 lesions: (1) conventional neuroradiological reports; (2) prospective visual analyses performed by an expert; (3) automated unsupervised tool; and (4) supervised convolutional neural network. As a gold standard, a reference outcome was created by the consensus of two observers. RESULTS: The automated methods detected a higher number of active T2 lesions, and a higher number of active patients, but a higher number of false-positive active patients than visual methods. The convolutional neural network model was more sensitive in detecting active T2 lesions and active patients than the other automated method. CONCLUSION: Automated convolutional neural network models show potential as an aid to neuroradiological assessment in clinical practice, although visual supervision of the outcomes is still required.


Asunto(s)
Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Estudios Prospectivos
4.
Sensors (Basel) ; 22(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35898083

RESUMEN

The quality of the drinking water distributed through the networks has become the main concern of most operators. This work focuses on one of the most important variables of the drinking water distribution networks (WDN) that use disinfection, chlorine. This powerful disinfectant must be dosed carefully in order to reduce disinfection byproducts (DBPs). The literature demonstrates researchers' interest in modelling chlorine decay and using several different approaches. Nevertheless, the full-scale application of these models is far from being a reality in the supervision of water distribution networks. This paper combines the use of validated chlorine prediction models with an intensive study of a large amount of data and its influence on the model's parameters. These parameters are estimated and validated using data coming from the Supervisory Control and Data Acquisition (SCADA) software, a full-scale water distribution system, and using off-line analytics. The result is a powerful methodology for calibrating a chlorine decay model on-line which coherently evolves over time along with the significant variables that influence it.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/análisis , Desinfección , Purificación del Agua/métodos
5.
J Magn Reson Imaging ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34137113

RESUMEN

BACKGROUND: Manual brain extraction from magnetic resonance (MR) images is time-consuming and prone to intra- and inter-rater variability. Several automated approaches have been developed to alleviate these constraints, including deep learning pipelines. However, these methods tend to reduce their performance in unseen magnetic resonance imaging (MRI) scanner vendors and different imaging protocols. PURPOSE: To present and evaluate for clinical use PARIETAL, a pre-trained deep learning brain extraction method. We compare its reproducibility in a scan/rescan analysis and its robustness among scanners of different manufacturers. STUDY TYPE: Retrospective. POPULATION: Twenty-one subjects (12 women) with age range 22-48 years acquired using three different MRI scanner machines including scan/rescan in each of them. FIELD STRENGTH/SEQUENCE: T1-weighted images acquired in a 3-T Siemens with magnetization prepared rapid gradient-echo sequence and two 1.5 T scanners, Philips and GE, with spin-echo and spoiled gradient-recalled (SPGR) sequences, respectively. ASSESSMENT: Analysis of the intracranial cavity volumes obtained for each subject on the three different scanners and the scan/rescan acquisitions. STATISTICAL TESTS: Parametric permutation tests of the differences in volumes to rank and statistically evaluate the performance of PARIETAL compared to state-of-the-art methods. RESULTS: The mean absolute intracranial volume differences obtained by PARIETAL in the scan/rescan analysis were 1.88 mL, 3.91 mL, and 4.71 mL for Siemens, GE, and Philips scanners, respectively. PARIETAL was the best-ranked method on Siemens and GE scanners, while decreasing to Rank 2 on the Philips images. Intracranial differences for the same subject between scanners were 5.46 mL, 27.16 mL, and 30.44 mL for GE/Philips, Siemens/Philips, and Siemens/GE comparison, respectively. The permutation tests revealed that PARIETAL was always in Rank 1, obtaining the most similar volumetric results between scanners. DATA CONCLUSION: PARIETAL accurately segments the brain and it generalizes to images acquired at different sites without the need of training or fine-tuning it again. PARIETAL is publicly available. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.

6.
MAGMA ; 34(6): 903-914, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34052900

RESUMEN

OBJECTIVE: In brain volume assessment with MR imaging, it is of interest to know the effects of the pulse sequence and software used, to determine whether they provide equivalent data. The aim of this study was to compare cross-sectional volumes of subcortical and ventricular structures and their repeatability derived from MP2RAGE and MPRAGE images using MorphoBox, and FIRST or ALVIN. MATERIALS AND METHODS: MPRAGE and MP2RAGE T1-weighted images were obtained from 24 healthy volunteers. Back-to-back scans were performed in 12 of them. Volumes, coefficients of variation, concordance, and correlations were determined. RESULTS: Significant differences were found for volumes derived from MorphoBox and FIRST. Ventricular volumes determined by MorphoBox and ALVIN were similar. Differences between volumes obtained using MPRAGE and MP2RAGE were significant for a few regions. Coefficients of variation, ranged from 0.2 to 9.1%, showed a significant inverse correlation with the mean volume. There was a correlation between volume measures, but agreement was rated as poor for most regions. CONCLUSION: MP2RAGE sequences and MorphoBox are valid options for assessing subcortical and ventricular volumes, in the same way as MPRAGE and FIRST or ALVIN, accepted tools for clinical research. However, caution is needed when comparing volumes obtained with different tools.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Estudios Transversales , Voluntarios Sanos , Humanos , Programas Informáticos
7.
MAGMA ; 33(6): 757-767, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32468150

RESUMEN

OBJECTIVE: For clinical purposes and research projects in neurological disease, it is of interest to evaluate the performance and comparability of available sequences and software packages for brain volume assessment to determine whether they provide equivalent results. This study compares cross-sectional brain volume values derived from images obtained with MP-RAGE or MP2RAGE sequences, using SIENA/X, SPM, or MorphoBox. MATERIALS AND METHODS: MP-RAGE and MP2RAGE T1-weighted images were obtained from 24 healthy volunteers. Back-to-back scans were performed in 12 of them. Brain volumes, coefficients of variation, and concordance coefficients were determined. RESULTS: Significant differences were found for most brain volumes derived from MP-RAGE and MP2RAGE images. MP2RAGE-derived measures showed a non-significant trend to larger coefficients of variation. There were statistical differences between brain volumes determined with the three software packages, whereas coefficients of variation were comparable for most brain volumes. Correlation and concordance values were lower for CSF and brain parenchyma fraction measures. CONCLUSION: The results obtained advise caution when comparing brain volumes obtained by different sequences and software packages. Of note, for most brain volume measures, the MP2RAGE and MorphoBox coefficients of variation were similar to those obtained with MP-RAGE, SIENA/X or SPM, accepted tools for clinical research.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Estudios Transversales , Voluntarios Sanos , Humanos
8.
Ultrason Imaging ; 40(2): 97-112, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29182056

RESUMEN

Mammography is the gold standard screening technique in breast cancer, but it has some limitations for women with dense breasts. In such cases, sonography is usually recommended as an additional imaging technique. A traditional sonogram produces a two-dimensional (2D) visualization of the breast and is highly operator dependent. Automated breast ultrasound (ABUS) has also been proposed to produce a full 3D scan of the breast automatically with reduced operator dependency, facilitating double reading and comparison with past exams. When using ABUS, lesion segmentation and tracking changes over time are challenging tasks, as the three-dimensional (3D) nature of the images makes the analysis difficult and tedious for radiologists. The goal of this work is to develop a semi-automatic framework for breast lesion segmentation in ABUS volumes which is based on the Watershed algorithm. The effect of different de-noising methods on segmentation is studied showing a significant impact ([Formula: see text]) on the performance using a dataset of 28 temporal pairs resulting in a total of 56 ABUS volumes. The volumetric analysis is also used to evaluate the performance of the developed framework. A mean Dice Similarity Coefficient of [Formula: see text] with a mean False Positive ratio [Formula: see text] has been obtained. The Pearson correlation coefficient between the segmented volumes and the corresponding ground truth volumes is [Formula: see text] ([Formula: see text]). Similar analysis, performed on 28 temporal (prior and current) pairs, resulted in a good correlation coefficient [Formula: see text] ([Formula: see text]) for prior and [Formula: see text] ([Formula: see text]) for current cases. The developed framework showed prospects to help radiologists to perform an assessment of ABUS lesion volumes, as well as to quantify volumetric changes during lesions diagnosis and follow-up.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Ultrasonografía Mamaria/métodos , Mama/diagnóstico por imagen , Neoplasias de la Mama , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Persona de Mediana Edad , Estudios Retrospectivos
9.
Sensors (Basel) ; 18(8)2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111697

RESUMEN

Pose estimation of free-form objects is a crucial task towards flexible and reliable highly complex autonomous systems. Recently, methods based on range and RGB-D data have shown promising results with relatively high recognition rates and fast running times. On this line, this paper presents a feature-based method for 6D pose estimation of rigid objects based on the Point Pair Features voting approach. The presented solution combines a novel preprocessing step, which takes into consideration the discriminative value of surface information, with an improved matching method for Point Pair Features. In addition, an improved clustering step and a novel view-dependent re-scoring process are proposed alongside two scene consistency verification steps. The proposed method performance is evaluated against 15 state-of-the-art solutions on a set of extensive and variate publicly available datasets with real-world scenarios under clutter and occlusion. The presented results show that the proposed method outperforms all tested state-of-the-art methods for all datasets with an overall 6.6% relative improvement compared to the second best method.

10.
Neuroimage ; 155: 159-168, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28435096

RESUMEN

In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Esclerosis Múltiple/diagnóstico por imagen , Redes Neurales de la Computación , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
12.
J Magn Reson Imaging ; 41(1): 93-101, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24459099

RESUMEN

PURPOSE: Ground-truth annotations from the well-known Internet Brain Segmentation Repository (IBSR) datasets consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue segmentation methods analyzing the effects of SCSF ground-truth voxels on accuracy estimations. MATERIALS AND METHODS: The set of methods is composed by FAST, SPM5, SPM8, GAMIXTURE, ANN, FCM, KNN, SVPASEG, FANTASM, and PVC. Methods are evaluated using original IBSR ground-truth and ranked by means of their performance on pairwise comparisons using permutation tests. Afterward, the evaluation is repeated using IBSR ground-truth without considering SCSF. RESULTS: The Dice coefficient of all methods is affected by changes in SCSF annotations, especially on SPM5, SPM8 and FAST. When not considering SCSF voxels, SVPASEG (0.90 ± 0.01) and SPM8 (0.91 ± 0.01) are the methods from our study that appear more suitable for gray matter tissue segmentation, while FAST (0.89 ± 0.02) is the best tool for segmenting white matter tissue. CONCLUSION: The performance and the accuracy of methods on IBSR images vary notably when not considering SCSF voxels. The fact that three of the most common methods (FAST, SPM5, and SPM8) report an important change in their accuracy suggest to consider these differences in labeling for new comparative studies.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Conjuntos de Datos como Asunto/estadística & datos numéricos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Mapeo Encefálico/métodos , Humanos , Reproducibilidad de los Resultados
13.
Neuroradiology ; 57(10): 1031-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26227167

RESUMEN

INTRODUCTION: Lesion segmentation plays an important role in the diagnosis and follow-up of multiple sclerosis (MS). This task is very time-consuming and subject to intra- and inter-rater variability. In this paper, we present a new tool for automated MS lesion segmentation using T1w and fluid-attenuated inversion recovery (FLAIR) images. METHODS: Our approach is based on two main steps, initial brain tissue segmentation according to the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) performed in T1w images, followed by a second step where the lesions are segmented as outliers to the normal apparent GM brain tissue on the FLAIR image. RESULTS: The tool has been validated using data from more than 100 MS patients acquired with different scanners and at different magnetic field strengths. Quantitative evaluation provided a better performance in terms of precision while maintaining similar results on sensitivity and Dice similarity measures compared with those of other approaches. CONCLUSION: Our tool is implemented as a publicly available SPM8/12 extension that can be used by both the medical and research communities.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas Informáticos , Humanos , Aumento de la Imagen/métodos , Aprendizaje Automático , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Validación de Programas de Computación
14.
J Digit Imaging ; 28(5): 604-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25720749

RESUMEN

Breast density is a strong risk factor for breast cancer. In this paper, we present an automated approach for breast density segmentation in mammographic images based on a supervised pixel-based classification and using textural and morphological features. The objective of the paper is not only to show the feasibility of an automatic algorithm for breast density segmentation but also to prove its potential application to the study of breast density evolution in longitudinal studies. The database used here contains three complete screening examinations, acquired 2 years apart, of 130 different patients. The approach was validated by comparing manual expert annotations with automatically obtained estimations. Transversal analysis of the breast density analysis of craniocaudal (CC) and mediolateral oblique (MLO) views of both breasts acquired in the same study showed a correlation coefficient of ρ = 0.96 between the mammographic density percentage for left and right breasts, whereas a comparison of both mammographic views showed a correlation of ρ = 0.95. A longitudinal study of breast density confirmed the trend that dense tissue percentage decreases over time, although we noticed that the decrease in the ratio depends on the initial amount of breast density.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Mama/patología , Procesamiento de Imagen Asistido por Computador , Glándulas Mamarias Humanas/anomalías , Interpretación de Imagen Radiográfica Asistida por Computador , Anciano , Densidad de la Mama , Neoplasias de la Mama/patología , Estudios de Factibilidad , Femenino , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Reproducibilidad de los Resultados
15.
Neuroradiology ; 56(5): 363-74, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24590302

RESUMEN

INTRODUCTION: Time-series analysis of magnetic resonance images (MRI) is of great value for multiple sclerosis (MS) diagnosis and follow-up. In this paper, we present an unsupervised subtraction approach which incorporates multisequence information to deal with the detection of new MS lesions in longitudinal studies. METHODS: The proposed pipeline for detecting new lesions consists of the following steps: skull stripping, bias field correction, histogram matching, registration, white matter masking, image subtraction, automated thresholding, and postprocessing. We also combine the results of PD-w and T2-w images to reduce false positive detections. RESULTS: Experimental tests are performed in 20 MS patients with two temporal studies separated 12 (12M) or 48 (48M) months in time. The pipeline achieves very good performance obtaining an overall sensitivity of 0.83 and 0.77 with a false discovery rate (FDR) of 0.14 and 0.18 for the 12M and 48M datasets, respectively. The most difficult situation for the pipeline is the detection of very small lesions where the obtained sensitivity is lower and the FDR higher. CONCLUSION: Our fully automated approach is robust and accurate, allowing detection of new appearing MS lesions. We believe that the pipeline can be applied to large collections of images and also be easily adapted to monitor other brain pathologies.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico , Humanos , Estudios Longitudinales
16.
iScience ; 27(2): 108881, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318348

RESUMEN

Automated tools to detect large vessel occlusion (LVO) in acute ischemic stroke patients using brain computed tomography angiography (CTA) have been shown to reduce the time for treatment, leading to better clinical outcomes. There is a lot of information in a single CTA and deep learning models do not have an obvious way of being conditioned on areas most relevant for LVO detection, i.e., the vasculature structure. In this work, we compare and contrast strategies to make convolutional neural networks focus on the vasculature without discarding context information of the brain parenchyma and propose an attention-inspired strategy to encourage this. We use brain CTAs from which we obtain 3D vasculature images. Then, we compare ways of combining the vasculature and the CTA images using a general-purpose network trained to detect LVO. The results show that the proposed strategies allow to improve LVO detection and could potentially help to learn other cerebrovascular-related tasks.

17.
Comput Med Imaging Graph ; 103: 102157, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36535217

RESUMEN

Automated methods for segmentation-based brain volumetry may be confounded by the presence of white matter (WM) lesions, which introduce abnormal intensities that can alter the classification of not only neighboring but also distant brain tissue. These lesions are common in pathologies where brain volumetry is also an important prognostic marker, such as in multiple sclerosis (MS), and thus reducing their effects is critical for improving volumetric accuracy and reliability. In this work, we analyze the effect of WM lesions on deep learning based brain tissue segmentation methods for brain volumetry and introduce techniques to reduce the error these lesions produce on the measured volumes. We propose a 3D patch-based deep learning framework for brain tissue segmentation which is trained on the outputs of a reference classical method. To deal more robustly with pathological cases having WM lesions, we use a combination of small patches and a percentile-based input normalization. To minimize the effect of WM lesions, we also propose a multi-task double U-Net architecture performing end-to-end inpainting and segmentation, along with a training data generation procedure. In the evaluation, we first analyze the error introduced by artificial WM lesions on our framework as well as in the reference segmentation method without the use of lesion inpainting techniques. To the best of our knowledge, this is the first analysis of WM lesion effect on a deep learning based tissue segmentation approach for brain volumetry. The proposed framework shows a significantly smaller and more localized error introduced by WM lesions than the reference segmentation method, that displays much larger global differences. We also evaluated the proposed lesion effect minimization technique by comparing the measured volumes before and after introducing artificial WM lesions to healthy images. The proposed approach performing end-to-end inpainting and segmentation effectively reduces the error introduced by small and large WM lesions in the resulting volumetry, obtaining absolute volume differences of 0.01 ± 0.03% for GM and 0.02 ± 0.04% for WM. Increasing the accuracy and reliability of automated brain volumetry methods will reduce the sample size needed to establish meaningful correlations in clinical studies and allow its use in individualized assessments as a diagnostic and prognostic marker for neurodegenerative pathologies.


Asunto(s)
Aprendizaje Profundo , Esclerosis Múltiple , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Procesamiento de Imagen Asistido por Computador/métodos
18.
Neuroimage Clin ; 38: 103376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36940621

RESUMEN

The application of convolutional neural networks (CNNs) to MRI data has emerged as a promising approach to achieving unprecedented levels of accuracy when predicting the course of neurological conditions, including multiple sclerosis, by means of extracting image features not detectable through conventional methods. Additionally, the study of CNN-derived attention maps, which indicate the most relevant anatomical features for CNN-based decisions, has the potential to uncover key disease mechanisms leading to disability accumulation. From a cohort of patients prospectively followed up after a first demyelinating attack, we selected those with T1-weighted and T2-FLAIR brain MRI sequences available for image analysis and a clinical assessment performed within the following six months (N = 319). Patients were divided into two groups according to expanded disability status scale (EDSS) score: ≥3.0 and < 3.0. A 3D-CNN model predicted the class using whole-brain MRI scans as input. A comparison with a logistic regression (LR) model using volumetric measurements as explanatory variables and a validation of the CNN model on an independent dataset with similar characteristics (N = 440) were also performed. The layer-wise relevance propagation method was used to obtain individual attention maps. The CNN model achieved a mean accuracy of 79% and proved to be superior to the equivalent LR-model (77%). Additionally, the model was successfully validated in the independent external cohort without any re-training (accuracy = 71%). Attention-map analyses revealed the predominant role of frontotemporal cortex and cerebellum for CNN decisions, suggesting that the mechanisms leading to disability accrual exceed the mere presence of brain lesions or atrophy and probably involve how damage is distributed in the central nervous system.


Asunto(s)
Aprendizaje Profundo , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Atención , Ceguera/patología
19.
Neuroradiology ; 54(8): 787-807, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22179659

RESUMEN

INTRODUCTION: Multiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided. METHODS: Time-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge. RESULTS: This paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends. CONCLUSION: Lesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Reconocimiento de Normas Patrones Automatizadas , Medios de Contraste , Progresión de la Enfermedad , Humanos
20.
Front Neurosci ; 16: 954662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248650

RESUMEN

The assessment of disease activity using serial brain MRI scans is one of the most valuable strategies for monitoring treatment response in patients with multiple sclerosis (MS) receiving disease-modifying treatments. Recently, several deep learning approaches have been proposed to improve this analysis, obtaining a good trade-off between sensitivity and specificity, especially when using T1-w and T2-FLAIR images as inputs. However, the need to acquire two different types of images is time-consuming, costly and not always available in clinical practice. In this paper, we investigate an approach to generate synthetic T1-w images from T2-FLAIR images and subsequently analyse the impact of using original and synthetic T1-w images on the performance of a state-of-the-art approach for longitudinal MS lesion detection. We evaluate our approach on a dataset containing 136 images from MS patients, and 73 images with lesion activity (the appearance of new T2 lesions in follow-up scans). To evaluate the synthesis of the images, we analyse the structural similarity index metric and the median absolute error and obtain consistent results. To study the impact of synthetic T1-w images, we evaluate the performance of the new lesion detection approach when using (1) both T2-FLAIR and T1-w original images, (2) only T2-FLAIR images, and (3) both T2-FLAIR and synthetic T1-w images. Sensitivities of 0.75, 0.63, and 0.81, respectively, were obtained at the same false-positive rate (0.14) for all experiments. In addition, we also present the results obtained when using the data from the international MSSEG-2 challenge, showing also an improvement when including synthetic T1-w images. In conclusion, we show that the use of synthetic images can support the lack of data or even be used instead of the original image to homogenize the contrast of the different acquisitions in new T2 lesions detection algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA