Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Inorg Chem ; 61(13): 5292-5308, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35312298

RESUMEN

A green complex [Fe(L3)] (1), supported by the deprotonated form of a hexadentate noninnocent redox-active thioether-appended 2-aminophenolate ligand (H4L3 = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)ethane), has been synthesized and structurally characterized at 100(2) K and 298(2) K. In CH2Cl2, 1 displays two oxidative and a reductive one-electron redox processes at E1/2 values of -0.52 and 0.20 V, and -0.85 V versus the Fc+/Fc redox couple, respectively. The one-electron oxidized 1+ and one-electron reduced 1- forms, isolated as a blackish-blue solid 1(PF6)·CH2Cl2 (2) and a gray solid [Co(η5-C5H5)2]1·DMF (3), have been structurally characterized at 100(2) K. Structural parameters at 100 K of the ligand backbone and metrical oxidation state values unambiguously establish the electronic states as [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] (1) (two tridentate halves are electronically asymmetric-ligand mixed-valency), [FeIII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}]+ (1+), and [FeIII{(LAPO,N)2-}{(LAPO,N)2-}{(LS,S)0}]- (1-) [dianionic 2-amidophenolate(2-) (LAPO,N)2- and monoanionic 2-iminobenzosemiquinonate(1-) π-radical (Srad = 1/2) (LISQ)•- redox level]. Mössbauer spectral data of 1 at 295, 200, and 80 K reveal that it has a major low-spin (ls)-Fe(III) and a minor ls-Fe(II) component (redox isomers), and at 7 K, the major component exists exclusively. Thus, in 1, the occurrence of a thermally driven valence-tautomeric (VT) equilibrium (asymmetric) [FeIII{(LAPO,N)2-}{(LISQO,N)•-}{(LS,S)0}] ⇌ (symmetric) [FeII{(LISQO,N)•-}{(LISQO,N)•-}{(LS,S)0}] (80-295 K) is implicated. Mössbauer spectral parameters unequivocally establish that 1+ is a ls-Fe(III) complex. In contrast, the monoanion 1- contains a high-spin (hs)-Fe(III) center (SFe = 5/2), as is deduced from its Mössbauer and EPR spectra. Complexes 1-3 possess total spin ground states St = 0, 1/2, and 5/2, respectively, based on 1H NMR and EPR spectra, the variable-temperature (2-300 K) magnetic behavior of 2, and the µeff value of 3 at 300 K. Broken-symmetry density functional theory (DFT) calculations at the B3LYP-level of theory reveal that the unpaired electron in 1+/2 is due to the (LISQ)•- redox level [ls-Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (LISQ)•- radicals (Srad = 1/2)], and 1-/3 is a hs-Fe(III) complex, supported by (L3)4- with two-halves in the (LAP)2- redox level. Complex 1 can have either a symmetric or asymmetric electronic state. As per DFT calculation, the former state is stabilized by -3.9 kcal/mol over the latter (DFT usually stabilizes electronically symmetric structure). Time-dependent (TD)-DFT calculations shed light on the origin of observed UV-vis-NIR spectral absorptions for 1-3 and corroborate the results of spectroelectrochemical experiments (300-1100 nm) on 1 (CH2Cl2; 298 K). Variable-temperature (218-298 K; CH2Cl2) absorption spectral (400-1000 nm) studies on 1 justify the presence of VT equilibrium in the solution-state.

2.
Inorg Chem ; 61(15): 5696-5700, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35385259

RESUMEN

The cobalt(II)-mediated self-assembly of the potentially tris(chelating) N,N'-2,2'-(4,4'-bithiazole)bis(oxamate) (dabtzox) ligand gives a new metal-organic supramolecular nanomagnet of formula K6Co3(dabtzox)3·8H2O·MeOH (1) featuring a unique linear triple-stranded trinuclear structure of the helicate type.

3.
Inorg Chem ; 60(9): 6176-6190, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33861078

RESUMEN

The reaction of aqueous solutions of EuIII, TbIII, and GdIII ions with Na2Hpcpa [H3pcpa = N-(4-carboxyphenyl)oxamic acid] afforded three new isostructural oxamate-containing lanthanide(III) coordination polymers of general formula {LnIII2(Hpcpa)3(H2O)5·H2O}n [Ln = Eu (1),Tb (2), and Gd(3)]. Their structure is made up of neutral zigzag chains running parallel to the [101] direction where double syn-syn carboxylate(oxamate)-bridged dilanthanide(III) pairs (Ln1 and Ln2) are linked by three Hpcpa2- ligands, one of them with the µ-κ2O,O':κO″ coordination mode and the other two with the µ3-κ2O,O':κO″:κO'''. Additionally, two of those chains are interlinked through hydrogen bonding and π-π type interactions, resulting in a porous structure with channels where water molecules are hosted. The emission properties of 1 and 2 are evaluated as a function of the temperature, exhibiting an emission in red and green, respectively. The external quantum yield for 2 is approximately 7 times that obtained for 1, indicating that the oxamate ligand is a better sensitizer for TbIII ions. The temperature dependence of the dc magnetic properties of 1-3 reveals a different magnetic behavior depending on the nature of the LnIII ion. A continuous decrease of χMT occurs for 1 upon cooling, and finally χMT tends to vanish, as expected for the thermal depopulation of the six magnetic 7FJ excited states (J = 1-6) of the EuIII ion with a nonmagnetic 7F0 ground state. χMT for 2 decreases sharply with decreasing the temperature due to the depopulation of the splitted mJ levels of the 7F7 ground state of the magnetically anisotropic TbIII ion. A very weak antiferromagnetic interaction between the magnetically isotropic GdIII ions across the double carboxylate(oxamate) bridge is responsible for the small decrease of χMT at low temperatures for 3. The dynamic (ac) magnetic properties of 2 and 3 reveal a slow magnetic relaxation with very incipient frequency-dependent χM″ signals below 6.0 K (2) and frequency-dependent χM″ peaks below 10.0 K (3) under nonzero applied dc magnetic fields, being thus new examples of field-induced single molecule magnets (SMMs).

4.
Inorg Chem ; 60(17): 12719-12723, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34424680

RESUMEN

The coexistence of field-induced blockage of the magnetization and significant magnetocaloric effects in the low-temperature region occurs in a mononuclear holmium(III) diethylenetriamine-N,N,N',N″,N″-pentaacetate complex, whose gadolinium(III) analogue is a commercial MRI contrast agent. Both properties make it a suitable candidate for cryogenic magnetic refrigeration, thus enlarging the variety of applications of this simple class of multifunctional molecular nanomagnets.


Asunto(s)
Complejos de Coordinación/química , Holmio/química , Imanes/química , Ácido Pentético/química , Refrigeración/métodos , Frío , Fenómenos Magnéticos
5.
Molecules ; 26(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917122

RESUMEN

Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1-4 in the temperature range 1.9-300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = -0.247(2) cm-1] and relatively weak intramolecular antiferromagnetic interactions [J = -4.86(2) cm-1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = -JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.

6.
Molecules ; 26(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068482

RESUMEN

Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)2(µ3-ox-κ2O1,O2:κO2':κO1')(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2',O1')]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorate counteranions and cationic centrosymmetric hexanuclear complexes where an inner tetrakis(pyrazole)(µ-κ2O1,O2:κ2O2',O1'-oxalato)dicopper(II) entity and two outer mononuclear tetrakis(pyrazole)copper(II) units are linked through two mononuclear aquabis(pyrazole)(µ3-κ2O1,O2:κO2':κO1'-oxalato)copper(II) units. The magnetic properties of 1 and 2 were investigated in the temperature range 2.0-300 K. Very weak intrachain antiferromagnetic interactions between the copper(II) ions through the µ3-ox-κ2O1,O2:κO2':κO1' center occur in 1 [J = -0.42(1) cm-1, the spin Hamiltonian being defined as H = -J∑S1,i · S2,i+1], whereas very weak intramolecular ferromagnetic [J = +0.28(2) cm-1] and strong antiferromagnetic [J' = -348(2) cm-1] couplings coexist in 2 which are mediated by the µ3-ox-κ2O1,O2:κO2':κO1' and µ-ox-κ2O1,O2:κ2O2',O1' centers, respectively. The variation in the nature and magnitude of the magnetic coupling for this pair of oxalato-centered inverse copper(II) complexes is discussed in the light of their different structural features, and a comparison with related oxalato-centered inverse copper(II)-pyrazole systems from the literature is carried out.

7.
Chemistry ; 26(62): 14242-14251, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-32649799

RESUMEN

A mononuclear iron(III) porphyrin compound exhibiting unexpectedly slow magnetic relaxation, which is a characteristic of single-ion magnet behaviour, is reported. This behaviour originates from the close proximity (≈550 cm-1 ) of the intermediate-spin S=3/2 excited states to the high-spin S=5/2 ground state. More quantitatively, although the ground state is mostly S=5/2, a spin-admixture model evidences a sizable contribution (≈15 %) of S=3/2 to the ground state, which as a consequence experiences large and positive axial anisotropy (D=+19.2 cm-1 ). Frequency-domain EPR spectroscopy allowed the mS = |±1/2⟩→|±3/2⟩ transitions to be directly accessed, and thus the very large zero-field splitting in this 3d5 system to be unambiguously measured. Other experimental results including magnetisation, Mössbauer, and field-domain EPR studies are consistent with this model, which is also supported by theoretical calculations.

8.
Inorg Chem ; 58(12): 8086-8099, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31136160

RESUMEN

Supported by endogenous (part of the ligand, in-built) phenoxo bridges provided by the ligand 2,6-bis[{{(5-bromo-2-hydroxybenzyl)}{(2-(pyridylethyl)}amino}methyl]-4-methylphenol) (H3L), in its deprotonated form, exogenous (not part of the ligand, externally added or generated) oxo-/hydroxo- and acetato-bridged [FeII4FeIII2(O)2(O2CMe)4(L)2]·4Et2O (1) and [FeIII4(OH)2(O2CMe)3(L)2](ClO4)·3MeCN·2H2O (2) coordination clusters have been synthesized and structurally characterized. Complexes 1 and 2 have µ4-O and µ3-OH bridges, respectively. Magnetic studies on 1 reveal slow magnetic relaxation below 2 K. Both in-phase ( χ'M) and out-of-phase (χ″M) magnetic susceptibility were found to be frequency dependent. This is typical of a single-molecule magnet (SMM) with τ0 = 1.9(2) × 10-7 s-1 and Ea = 5.1(3) cm-1. Assuming that Ea corresponds to the energy splitting of the ground spin state ( S = 2) by the zero-filed-splitting (zfs), Ea = 4| D| ( D is the axial zfs parameter), D ≈ - 1.3 cm-1 could be estimated. For 2, three types of magnetic interactions are observed: JA = -56.5(3), JB = -71.6(4), and JC = +4.5(2) cm-1. Considering the observed structural parameters, the magnetic behavior for both of the coordination clusters 1 and 2 has been rationalized.

9.
Inorg Chem ; 58(21): 14498-14506, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31621305

RESUMEN

Achieving fine control on the structure of metal-organic frameworks (MOFs) is mandatory to obtain target physical properties. Herein, we present how the combination of a metalloligand approach and a postsynthetic method is a suitable and highly useful synthetic strategy to success on this extremely difficult task. First, a novel oxamato-based tetranuclear cobalt(III) compound with a tetrahedron-shaped geometry is used, for the first time, as the metalloligand toward calcium(II) metal ions to lead to a diamagnetic CaII-CoIII three-dimensional (3D) MOF (1). In a second stage, in a single-crystal-to-single-crystal manner, the calcium(II) ions are replaced by terbium(III), dysprosium(III), holmium(III), and erbium(III) ions to yield four isostructural novel LnIII-CoIII [Ln = Tb (2), Dy (3), Ho (4), and Er (5)] 3D MOFs. Direct-current magnetic properties for 2-5 show typical performances for the ground-state terms of the lanthanoid cations [7F6 (TbIII), 6H15/2 (DyIII), 5I8 (HoIII), and 4I15/2 (ErIII)]. Analysis of the χMT data indicates that the ground state is the lowest MJ value, that is, MJ = 0 (2 and 4) and ±1/2 (3 and 5). Kramers' ions (3 and 5) exhibit field-induced emergent frequency-dependent alternating-current magnetic susceptibility signals, which is indicative of the presence of slow magnetic relaxation typical of single-molecule magnets.

10.
Inorg Chem ; 58(9): 6246-6256, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30997801

RESUMEN

Three Co(II) metal-organic frameworks, namely, {[Co2(L)2(OBA)2(H2O)4]· xG} n (1), {[Co(L)0.5(OBA)]· xG} n (2), and {[Co2(L)2(OBA)2(H2O)]·DMA· xG} n (3) [where L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene, H2OBA = 4,4'-oxybisbenzoic acid, DMF = dimethylformamide, DMA = dimethylacetamide, and G denotes disordered guest molecules], have been synthesized under diverse reaction conditions through self-assembly of a bent dicarboxylate and a linear spacer with a Co(II) ion. While 1 is crystallized at room temperature in DMF to form a 2D layer structure, 2 is formed by the assembly of similar components under solvothermal conditions with a 3D network structure. On the other hand, changing the solvent to DMA, 3 could be crystallized at room temperature with a 3D architecture. Out of the three, activated sample 2 was found to be permanently microporous in nature, with a BET surface area of 385 m2/g, and exhibited moderately high uptake capacity for C2H2 and CO2 while taking up much less CH4 and N2 at ambient conditions. As a result, high ideal adsorbed solution theory (IAST) separation selectivities are obtained for CO2/N2 (15:85), CO2/CH4 (50:50), and C2H2/CH4 (50:50) gas mixtures, making 2 a potential candidate for those important gas separations at ambient conditions. Moreover, the magnetic properties of 1-3 were studied. 1 and 2 show antiferromagnetic interaction between the Co(II) centers, whereas 3 displays ferromagnetic behavior arising from a counter-complementary effect between two types of links among Co(II) centers in 3.

11.
Inorg Chem ; 58(22): 15359-15370, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31657914

RESUMEN

Electrocrystallization of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) organic donor in the presence of the [Fe(ClCNAn)3]3- tris(chlorocyananilato)ferrate(III) paramagnetic anion in different stoichiometric ratios and solvent mixtures afforded two different hybrid systems formulated as [BEDT-TTF]4[Fe(ClCNAn)3]·3H2O (1) and [BEDT-TTF]5[Fe(ClCNAn)3]2·2CH3CN (2) (An = anilato). Compounds 1 and 2 present unusual structures without the typical segregated organic and inorganic layers, where layers of 1 are formed by Λ and Δ enantiomers of the anionic paramagnetic complex together with mixed-valence BEDT-TTF tetramers, while layers of 2 are formed by Λ and Δ enantiomers of the paramagnetic complex together with dicationic BEDT-TTF dimers and monomers. Compounds 1 and 2 show semiconducting behaviors with room-temperature conductivities of ca. 6 × 10-3 S cm-1 (ambient pressure) and 1 × 10-3 S cm-1 (under applied pressure of 12.1 GPa), respectively, due to strong dimerization between the donors. Magnetic measurements performed on compound 1 indicate weak antiferromagnetic coupling between high-spin FeIII (SFe = 5/2) and mixed-valence radical cation diyads (BEDT-TTF)2+ (Srad = 1/2) mediated by the anilate ligands, together with an important Pauli paramagnetism typical for conducting systems.

12.
Inorg Chem ; 56(20): 12594-12605, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28952727

RESUMEN

A new series of cyanido-bridged {LnIIIWV} heterobinuclear complexes of formula [LnIII(pyim)2(i-PrOH)(H2O)2(µ-CN)WV(CN)7]·2H2O [Ln = Gd (1), Tb (2), Dy (3), Ho (4), and Er (5); pyim = 2-(1H-imidazol-2-yl)-pyridine) and i-PrOH = isopropyl alcohol] were synthesized by one-pot reaction between (NH3Bu)3[W(CN)8] and [Ln(pyim)2]2+ complexes (generated in situ by mixing the corresponding LnIII ions and the pyim ligand). Compounds 1-5 are isomorphous and crystallize in the monoclinic system P21/n space group. Their crystal structure consists of binuclear units in which the octacyanotungstate(V) anion coordinates to the corresponding LnIII ion through a single cyanide ligand. The tungsten(V) and lanthanide(III) ions are eight-coordinated, in distorted square antiprism (WV) and distorted trigonal dodecahedron (LnIII) geometries, respectively. The direct-current (dc) magnetic properties for 1-5 reveal the occurrence of weak antiferromagnetic interactions between WV and LnIII cation, with 8S7/2, 7F6, 6H15/2, 5I8, and 4I15/2 as ground terms for GdIII, TbIII, DyIII HoIII, and ErIII, respectively [JWLn = -1.19(1) (1), -1.02(2) (2), -1.10(2) (3), -1.30(2) (4), and -1.50(3) cm-1 (5), the spin Hamiltonian being defined as H = -JWLn SW·SLn]. The fit of the χMT data of 2-4 points out a positive value for the energy gap between the ML components (Δ). This feature is corroborated by their Q-band electron paramagnetic resonance spectra at low temperature, which clearly show MJ = 0 (2 and 4) and ±1/2 (3 and 5). Incipient frequency-dependent alternating-current magnetic susceptibility signals are observed for 3 and 5 under applied dc fields supporting the presence of slow magnetic relaxation behavior, the blocking temperatures being below 2.0 K. This new series of {LnIIIWV} heterobinuclear compounds provides more insights into the exchange magnetic interaction between 5d and 4f centers via the cyanide-bridge, for which scarce information is available to date.

13.
Inorg Chem ; 56(4): 2258-2269, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28177230

RESUMEN

The self-assembly process between the heteroleptic [CrIII(phen)(CN)4]- and [CrIII(ampy)(CN)4]- metalloligands and the heterobimetallic {CuII(valpn)MnII}2+ tecton afforded two heterotrimetallic complexes of formula [{CuII(valpn)MnII(µ-NC)2CrIII(phen)(CN)2}2{(µ-NC)CrIII(phen)(CN)3}2]·2CH3CN (1) and {[CuII(valpn)MnII(µ-NC)2CrIII(ampy)(CN)2]2·2CH3CN}n (2) [phen = 1,10-phenanthroline, ampy = 2-aminomethylpyridine, and H2valpn = 1,3-propanedyilbis(2-iminomethylene-6-methoxyphenol)]. The crystal structure of 1 consists of neutral CuII2MnII2CrIII4 octanuclear units, where two [Cr(phen)(CN)4]- anions act as bis-monodentate ligands through cyanide groups toward two manganese(II) ions from two [CuII(valpn)MnII]2+ units to form a [{Cu(valpn)Mn}2Cr2(CN)4]6+ square motif. Two [Cr(phen)(CN)4]- pendant anions in 1 are bound to the copper(II) ions with cis-trans geometry with respect to the bridging [Cr(phen)(CN)4]- anion. Compound 2 is a sheet-like coordination polymer, where chains constituted by {CrIII(ampy)(CN)4} spacers act as bis-monodentate ligands toward the manganese(II) ions belonging to the {CuII(valpn)MnII} nodes, which are interlinked by another {CrIII(ampy)(CN)4} unit that acts as a bridge between the copper(II) and manganese(II) ions of adjacent chains. Magnetic susceptibility measurements in the temperature range of 1.9-300 K were performed for 1 and 2. An overall antiferromagnetic behavior is observed for 1, the ground spin state being described by a spin triplet from the square motif plus two magnetically isolated spin triplets from the two peripheral chromium(III) ions. Ferrimagnetic chains with interacting spins 1/2 (resulting spin of the trimetallic {CuII(valpn)MnII(µ-NC)CrIII} fragment) and 3/2 (spin from the bis-monodentate [CrIII(ampy)(CN)4]- with weak interchain ferromagnetic interactions across the cyanide bridge between the chromium(III) and the copper(II) ion from adjacent chains [θ = +3.83(2) cm-1]) occur in 2, resulting into a ferromagnetic ordering below 3.5 K. The values of the magnetic coupling between the Cu(II) and Mn(II) ions through the double phenoxide bridge [J = -63.1(2) (1) and -62(3) cm-1 (2)] and those between the Cr(III) and the Mn(II) across the single cyanide bridge [J = -7.08(5) and -4.86(6) cm-1 (1) and -8.59(3) cm-1 (2)] agree with the values reported for these exchange pathways in other magnetostructural studies.

14.
Inorg Chem ; 56(11): 6281-6296, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28530402

RESUMEN

The preparation and spectroscopic and structural characterization of three cobalt(II) complexes of formulas [Co(tppz)2](dca)2 (1), [Co(tppz)2][Co(NCS)4]·MeOH (2), and [Co(tppz)2][Co(NCO)4]·2H2O (3) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide] are reported here. Compounds 1-3 have in common the presence of the cationic [Co(tppz)2]2+ entity where each mer-tridentate tppz ligand coordinates to the cobalt(II) ion equatorially through two pyridyl donors and axially via the pyrazine, completing the six-coordination. The electroneutrality is achieved by the organic dca group (1) and the anionic tetrakis(thiocyanato-κN)cobaltate(II) (2) and tetrakis(cyanato-κN)cobaltate(II) (3) complexes. Direct current (dc) magnetic susceptibility measurements of 1 in the temperature range 1.9-400 K show the occurrence of a thermally induced spin crossover behavior of the [Co(tppz)2]2+ unit from a high spin (S = 3/2) at higher temperatures to a low-spin (S = 1/2) at lower temperatures, with the low spin phase being reached at T ≤ 200 K. X-band electron paramagnetic resonance (EPR) measurements in solution at low temperatures were used to characterize the low spin state. An analytical expression based on the combination of the spin-orbit coupling and both first- and second-order Zeeman effects for a d7 electronic configuration was used to fit the magnetic data of 1, the values of the best-fit parameters being Cvib = 0.1367(9), λ = -168(2) cm-1, α = 1.12(1), Δ = 1626(15) cm-1, and gLS = 2.12(1). The magnetic behavior of the four-coordinate cobalt(II) ions [Co(NCS)4]2- (2) and [Co(NCO)4]2- (3) with a 4A2 ground state overlaps with the spin crossover of the [Co(tppz)2]2+ entity, the abrupt decrease of the χMT product below 15.0 K being due to zero-field splitting effects between the spin components |±1/2> and |±3/2>. The combined analysis of the dc magnetic data and the Q-band EPR spectra in the solid state of 2 and 3 led to the following sets of best-fit parameters: Cvib = 0.105(5), λ = -170(4) cm-1, α = 1.10(2), Δ = 1700(25) cm-1, gLS = 2.10(1), gHS = 2.27(1), and |D| = 3.80(2) cm-1 (2) and Cvib = 0.100(1), λ = -169(5) cm-1, α = 1.10(3), Δ = 1500(30) cm-1, gLS = 2.10(1), gHS = 2.28(1), and |D| = 4.30(2) cm-1 (3). Some evidence of slowing of the relaxation of the magnetization has been found in the out-of-phase ac signal at very low temperatures under applied dc fields of 0.1-0.4 T for 3, suggesting the occurrence of single-ion magnet behavior of its [Co(NCO)4]2- anionic entity.

15.
Inorg Chem ; 56(4): 2108-2123, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157308

RESUMEN

In the series described in this work, the hydrothermal synthesis led to oxidation of the 5-methyl-pyrazinecarboxylate anion to the 2,5-pyrazinedicarboxylate dianion (2,5-pzdc) allowing the preparation of three-dimensional (3D) lanthanide(III) organic frameworks of formula {[Ln2(2,5-pzdc)3(H2O)4]·6H2O}n [Ln = Ce (1), Pr (2), Nd (3), and Eu (4)] and {[Er2(2,5-pzdc)3(H2O)4]·5H2O}n (5). Single-crystal X-ray diffraction on 1-5 reveals that they crystallize in the triclinic system, P1̅ space group with the series 1-4 being isostructural. The crystal structure of the five compounds are 3D with the lanthanide(III) ions linked through 2,5-pzdc2- dianions acting as two- and fourfold connectors, building a binodal 4,4-connected (4·648)(426282)-mog network. The photophysical properties of the Nd(III) (3) and Eu(III) (4) complexes exhibit sensitized photoluminescence in the near-infrared and visible regions, respectively. The photoluminescence intensity and lifetime of 4 were very sensitive due to the luminescence quenching of the 5D0 level by O-H oscillators of four water molecules in the first coordination sphere leading to a quantum efficiency of 11%. Variable-temperature magnetic susceptibility measurements for 1-5 reveal behaviors as expected for the ground terms of the magnetically isolated rare-earth ions [2F5/2, 2H4, 4I9/2, 7F0, and 4I15/2 for Ce(III), Pr(III), Nd(III), Eu(III), and Er(III), respectively] with MJ = 0 (2 and 4) and ±1/2 (1, 3, and 5). Q-band electron paramagnetic resonance measurements at low temperature corroborate these facts. Frequency-dependent alternating-current magnetic susceptibility signals under external direct-current fields in the range of 100-2500 G were observed for the Kramers ions of 1, 3, and 5, indicating slow magnetic relaxation (single-ion magnet) behavior. In these compounds, τ-1 decreases with decreasing temperature at any magnetic field, but no Arrhenius law can simulate such a dependence in all the temperature range. This dependence can be reproduced by the contributions of direct and Raman processes, the Raman exponent (n) reaching the expected value (n = 9) for a Kramers system.

16.
Acc Chem Res ; 48(3): 510-20, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25697758

RESUMEN

Metallosupramolecular complexes constitute an important advance in the emerging fields of molecular spintronics and quantum computation and a useful platform in the development of active components of spintronic circuits and quantum computers for applications in information processing and storage. The external control of chemical reactivity (electro- and photochemical) and physical properties (electronic and magnetic) in metallosupramolecular complexes is a current challenge in supramolecular coordination chemistry, which lies at the interface of several other supramolecular disciplines, including electro-, photo-, and magnetochemistry. The specific control of current flow or spin delocalization through a molecular assembly in response to one or many input signals leads to the concept of developing a molecule-based spintronics that can be viewed as a potential alternative to the classical molecule-based electronics. A great variety of factors can influence over these electronically or magnetically coupled, metallosupramolecular complexes in a reversible manner, electronic or photonic external stimuli being the most promising ones. The response ability of the metal centers and/or the organic bridging ligands to the application of an electric field or light irradiation, together with the geometrical features that allow the precise positioning in space of substituent groups, make these metal-organic systems particularly suitable to build highly integrated molecular spintronic circuits. In this Account, we describe the chemistry and physics of dinuclear copper(II) metallacyclophanes with oxamato-containing dinucleating ligands featuring redox- and photoactive aromatic spacers. Our recent works on dicopper(II) metallacyclophanes and earlier ones on related organic cyclophanes are now compared in a critical manner. Special focus is placed on the ligand design as well as in the combination of experimental and computational methods to demonstrate the multifunctionality nature of these metallosupramolecular complexes. This new class of oxamato-based dicopper(II) metallacyclophanes affords an excellent synthetic and theoretical set of models for both chemical and physical fundamental studies on redox- and photo-triggered, long-distance electron exchange phenomena, which are two major topics in molecular magnetism and molecular electronics. Apart from their use as ground tests for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the electron exchange interaction through extended π-conjugated aromatic ligands in polymetallic complexes, oxamato-based dicopper(II) metallacyclophanes possessing spin-containing electro- and chromophores at the metal and/or the ligand counterparts emerge as potentially active (magnetic and electronic) molecular components to build a metal-based spintronic circuit. They are thus unique examples of multifunctional magnetic complexes to get single-molecule spintronic devices by controlling and allowing the spin communication, when serving as molecular magnetic couplers and wires, or by exhibiting bistable spin behavior, when acting as molecular magnetic rectifiers and switches. Oxamato-based dicopper(II) metallacyclophanes also emerge as potential candidates for the study of coherent electron transport through single molecules, both experimentally and theoretically. The results presented herein, which are a first step in the metallosupramolecular approach to molecular spintronics, intend to attract the attention of physicists and materials scientists with a large expertice in the manipulation and measurement of single-molecule electron transport properties, as well as in the processing and addressing of molecules on different supports.

17.
Chemistry ; 22(2): 539-45, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26603579

RESUMEN

Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM.

18.
Inorg Chem ; 55(24): 12696-12706, 2016 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989161

RESUMEN

From the perspective of synthetic metallohydrolases, a phenoxo-bridged dinickel(II) complex [NiII2(L)(H2O)2(CH3OH)][ClO4]·CH3OH (1) (H3L = 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N″-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol) has been synthesized and structurally characterized. The presence of a vacant coordination site and a weakly bound water molecule provides the scope for substrate binding to act as a metallohydrolase model. Ethyl acetate vapor diffusion at 298 K to a CH3CN/CH3OH solution of 1 results in the formation of a pentanuclear acetato-bridged complex [NiII5(H2L)2(µ3-OH)2(µ-O2CCH3)4][ClO4]2·CH3CO2C2H5 (2), demonstrating for the first time the metal-coordinated water-promoted hydrolysis of a carboxyester at room temperature. When the crystals of 1, moistened with a few drops of ethyl acetate, were kept for ethyl acetate vapor diffusion, it transforms into a monoacetato-bridged complex [NiII2(HL)(µ-O2CCH3)(H2O)2][ClO4]·4H2O (3). This kind of solvent (vapor)-induced single-crystal-to-single-crystal structural transformation concomitant with the hydrolysis of external substrate (ethyl acetate) is unprecedented. Reaction of H3L with 2 equiv of NiII(O2CCH3)2·4H2O, followed by the usual workup, and recrystallization from CH2Cl2 led to the isolation of [NiII2(H2L)(µ-O2CCH3)2][ClO4]·CH2Cl2·2H2O (4). Complex 4 is structurally different from 3, confirming that the reaction of NiII(O2CCH3)2·4H2O with H3L is a different phenomenon from the hydrolysis of ethyl acetate, promoted by NiII-coordinated water in 1. Complex 1 is also capable of hydrolyzing ethyl propionate to a propionato-bridged complex [NiII2(HL)(µ-O2CCH2CH3)(H2O)2][ClO4] (5). For the hydrolytic phenomena mentioned above, the coordinated ligand donor sites (phenolate and tertiary amine) provide a microenvironment around the dinickel(II) center to facilitate efficient stoichiometric hydrolysis of ethyl acetate and ethyl propionate under ambient conditions. Temperature-dependent magnetic studies of dimeric complexes 1, 4, and 5 reveal the presence of moderate antiferromagnetic coupling: J = -25.0(1) cm-1 for 1, J = -20.0(1) cm-1 for 4, and J = -18.80(8) cm-1 for 5. For pentanuclear complex 2, three types of magnetic-exchange interactions, two ferromagnetic (Ja = +16.02 cm-1, and Jb = +9.02 cm-1) and an antiferromagnetic (Jc = -49.7 cm-1), have been identified.


Asunto(s)
Ésteres/química , Hidrolasas/química , Níquel/química , Solventes/química , Cristalografía por Rayos X , Hidrólisis , Potenciometría
19.
Inorg Chem ; 55(12): 5759-71, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27232547

RESUMEN

Aerobic reaction of a hexadentate redox-active o-aminophenol-based ligand, H4L(3) = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)-ethane, in CH3OH with Ni(II)(O2CCH3)2·4H2O and Et3N afforded isolation of a reddish-brown crystalline solid [Ni(L(3))] 1. Cyclic voltammetry (CV) experiment exhibits two oxidative responses at E1/2 = 0.09 and 0.53 V vs SCE (saturated calomel electrode). Chemical oxidation of 1 in air by [Fe(III)(η(5)-C5H5)2][PF6] and AgBF4 in CH2Cl2 led to the isolation of one-electron oxidized species [1](1+) as purple [1][PF6]·CH2Cl2 and two-electron oxidized species [1](2+) as dark purple [1][BF4]2·CH2Cl2, respectively. X-ray crystallographic analysis at 100(2) K unambiguously established that the ligand is present in [Ni(II){(L(ISQ)O,N)(•-)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}] 1, [Ni(II){(L(IBQ)O,N)(0)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}][PF6]·CH2Cl2, and [Ni(II){(L(IBQ)O,N)(0)}{(L(IBQ)O,N)(0)}{(LS,S)(0)}][BF4]2·CH2Cl2, as monoanionic o-iminosemiquinonate(1-) π-radical (Srad = 1/2) (L(ISQ))(•-) and neutral o-iminoquinone (L(IBQ))(0) redox-levels. Complexes 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 possess an S = 2, 3/2, and 1 ground-state, respectively, established by temperature-dependent (2-300 K) magnetic behavior of 1 and [1][PF6]·CH2Cl2, and a µeff value of [1][BF4]2·CH2Cl2 at 300 K. Both 1 and [1][PF6]·CH2Cl2 exhibit ferromagnetic exchange-coupling between the two electrons of Ni(II) and two/one ligand π-radicals, respectively. The redox processes are shown to be ligand-based. Spectroscopic and redox properties, and density functional theory (DFT) calculations at the CAM-B3LYP-level of theory adequately describe the electronic structure of 1, [1](1+), and [1](2+). The observed UV-vis-NIR absorptions for 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 have been assigned, based on time-dependent (TD)-DFT calculations.

20.
Inorg Chem ; 55(21): 11160-11169, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27749048

RESUMEN

The preparation and structural characterization of four novel oxalate-based iron(III) compounds of formulas {(MeNH3)2[Fe2(ox)2Cl4]·2.5H2O}n (1), K(MeNH3)[Fe(ox)Cl3(H2O)] (2), {MeNH3[Fe2(OH)(ox)2Cl2]·2H2O}n (3), and {(H3O)(MeNH3)[Fe2O(ox)2Cl2]·3H2O}n (4) (MeNH3+ = methylammonium cation and H2ox = oxalic acid) are reported here. 1 is an anionic waving chain of oxalato-bridged iron(III) ions with peripheral chloro ligands, the charge balance being ensured by methylammonium cations. 2 is a mononuclear complex with a bidentate oxalate, three terminal chloro ligands, and a coordinated water molecule achieving the six-coordination around each iron(III) ion. Its negative charge is balanced by potassium(I) and methylammonium cations. 3 and 4 are made up of oxalate-bridged and either hydroxo (3)- or oxo-bridged (4) iron(III) chiral three-dimensional (3D) networks of formulas [Fe2(OH)(ox)2Cl2]nn- (3) and [Fe2O(ox)2Cl2]n2n- (4) with methylammonium (3 and 4) and hydronium (4) as counterions. The common point these compounds share is related to their synthetic strategy, which consists of the use of mixed alkaline/alkylammonium cations as templating agents for the growth of the 1D or 3D iron(III) motifs. Interestingly, even in the presence of any given alkaline cation in the reaction solutions, the resulting coordination polymers (1, 3, and 4) exclusively contain the methylammonium cation, revealing the highly selective character of the 1D and 3D networks. Furthermore, the isolation of the very unstable compound 1 could be only achieved in the presence of the KCl salt, suggesting a probable templating effect of the potassium(I) cations. Finally, a study of the variable-temperature magnetic properties of the 3D compounds 3 and 4 showed the occurrence of weak ferromagnetic ordering due to a spin canting, the value of the critical temperature (Tc) being as high as 70 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA