Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
2.
PLoS Biol ; 13(7): e1002194, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26158621

RESUMEN

Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.


Asunto(s)
Encéfalo/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Dronabinol/efectos adversos , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Amnesia/inducido químicamente , Analgesia , Animales , Ansiedad/inducido químicamente , Encéfalo/metabolismo , Dimerización , Núcleo Dorsal del Rafe/efectos de los fármacos , Células HEK293 , Humanos , Hipotermia/inducido químicamente , Locomoción/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor de Serotonina 5-HT2A/efectos de los fármacos
3.
J Biol Chem ; 287(25): 20851-65, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22532560

RESUMEN

Exploring the role of cannabinoid CB(2) receptors in the brain, we present evidence of CB(2) receptor molecular and functional interaction with cannabinoid CB(1) receptors. Using biophysical and biochemical approaches, we discovered that CB(2) receptors can form heteromers with CB(1) receptors in transfected neuronal cells and in rat brain pineal gland, nucleus accumbens, and globus pallidus. Within CB(1)-CB(2) receptor heteromers expressed in a neuronal cell model, agonist co-activation of CB(1) and CB(2) receptors resulted in a negative cross-talk in Akt phosphorylation and neurite outgrowth. Moreover, one specific characteristic of CB(1)-CB(2) receptor heteromers consists of both the ability of CB(1) receptor antagonists to block the effect of CB(2) receptor agonists and, conversely, the ability of CB(2) receptor antagonists to block the effect of CB(1) receptor agonists, showing a bidirectional cross-antagonism phenomenon. Taken together, these data illuminate the mechanism by which CB(2) receptors can negatively modulate CB(1) receptor function.


Asunto(s)
Globo Pálido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Núcleo Accumbens/metabolismo , Glándula Pineal/metabolismo , Multimerización de Proteína/fisiología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética
4.
Purinergic Signal ; 9(3): 433-49, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23657626

RESUMEN

Astrocytes play a key role in modulating synaptic transmission by controlling extracellular gamma-aminobutyric acid (GABA) levels via GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that a further level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A1 (A1R) and A2A (A2AR) receptors. This regulation occurs through A1R-A2AR heteromers that signal via two different G proteins, Gs and Gi/0, and either enhances (A2AR) or inhibits (A1R) GABA uptake. These results provide novel mechanistic insight into how GPCR heteromers signal. Furthermore, we uncover a previously unknown mechanism where adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Asunto(s)
Astrocitos/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Adenosina/metabolismo , Animales , Western Blotting , Femenino , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ensayo de Unión Radioligante , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología , Transfección
5.
Proc Natl Acad Sci U S A ; 107(43): 18676-81, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20956312

RESUMEN

It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.


Asunto(s)
Trastornos Relacionados con Cocaína/metabolismo , Cocaína/toxicidad , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores sigma/efectos de los fármacos , Receptores sigma/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células CHO , Línea Celular , Trastornos Relacionados con Cocaína/etiología , Cricetinae , Cricetulus , Dimerización , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Estructura Cuaternaria de Proteína/efectos de los fármacos , Receptores de Dopamina D1/química , Receptores de Dopamina D1/genética , Receptores sigma/química , Receptores sigma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección , Receptor Sigma-1
6.
J Neurosci ; 31(44): 15629-39, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049406

RESUMEN

Astrocytes play a key role in modulating synaptic transmission by controlling the available extracellular GABA via the GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that an additional level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A(1) (A(1)R) and A(2A) (A(2A)R) receptors. This regulation occurs through a complex of heterotetramers (two interacting homodimers) of A(1)R-A(2A)R that signal via two different G-proteins, G(s) and G(i/o), and either enhances (A(2A)R) or inhibits (A(1)R) GABA uptake. These results provide novel mechanistic insight into how G-protein-coupled receptor heteromers signal. Furthermore, we uncover a previously unknown mechanism in which adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Adenosina A2/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas Bacterianas/genética , Biotinilación , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , GABAérgicos/farmacología , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Regulación de la Expresión Génica/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Proteínas Luminiscentes/genética , Modelos Biológicos , Ácidos Nipecóticos/farmacología , Fenilisopropiladenosina/metabolismo , Unión Proteica/efectos de los fármacos , Purinérgicos/farmacología , Ratas , Ratas Wistar , Receptores de Adenosina A2/genética , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Transfección/métodos , Tritio/metabolismo
7.
Nat Methods ; 5(8): 727-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18587404

RESUMEN

Identification of higher-order oligomers in the plasma membrane is essential to decode the properties of molecular networks controlling intercellular communication. We combined bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) in a technique called sequential BRET-FRET (SRET) that permits identification of heteromers formed by three different proteins. In SRET, the oxidation of a Renilla luciferase (Rluc) substrate by an Rluc fusion protein triggers acceptor excitation of a second fusion protein by BRET and subsequent FRET to a third fusion protein. We describe two variations of SRET that use different Rluc substrates with appropriately paired acceptor fluorescent proteins. Using SRET, we identified complexes of cannabinoid CB(1), dopamine D(2) and adenosine A(2A) receptors in living cells. SRET is an invaluable technique to identify heteromeric complexes of more than two neurotransmitter receptors, which will allow us to better understand how signals are integrated at the molecular level.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Complejos Multiproteicos/análisis , Complejos Multiproteicos/química , Línea Celular , Supervivencia Celular , Humanos , Proteínas Luminiscentes/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/química
8.
J Biol Chem ; 284(41): 28058-28068, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19632986

RESUMEN

The Ca(2+)-binding protein calmodulin (CaM) has been shown to bind directly to cytoplasmic domains of some G protein-coupled receptors, including the dopamine D(2) receptor. CaM binds to the N-terminal portion of the long third intracellular loop of the D(2) receptor, within an Arg-rich epitope that is also involved in the binding to G(i/o) proteins and to the adenosine A(2A) receptor, with the formation of A(2A)-D(2) receptor heteromers. In the present work, by using proteomics and bioluminescence resonance energy transfer (BRET) techniques, we provide evidence for the binding of CaM to the A(2A) receptor. By using BRET and sequential resonance energy transfer techniques, evidence was obtained for CaM-A(2A)-D(2) receptor oligomerization. BRET competition experiments indicated that, in the A(2A)-D(2) receptor heteromer, CaM binds preferentially to a proximal C terminus epitope of the A(2A) receptor. Furthermore, Ca(2+) was found to induce conformational changes in the CaM-A(2A)-D(2) receptor oligomer and to selectively modulate A(2A) and D(2) receptor-mediated MAPK signaling in the A(2A)-D(2) receptor heteromer. These results may have implications for basal ganglia disorders, since A(2A)-D(2) receptor heteromers are being considered as a target for anti-parkinsonian agents.


Asunto(s)
Calmodulina/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Calmodulina/química , Calmodulina/genética , Línea Celular , Dopamina/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Datos de Secuencia Molecular , Complejos Multiproteicos , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
9.
J Neurochem ; 114(4): 972-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20477947

RESUMEN

Pharmacological characterization of adenosine A(1) and A(2A) receptors in human brain caudate nucleus membranes led to non-cooperative binding of radiolabelled ligands. In human caudate nucleus but not in cortex, the agonist binding to A(1) receptors was modulated by the agonist binding to A(2A) receptors indicating a functional negative cross-talk. Accordingly, the A(1) receptor-activation-mediated G(i)-dependent guanosine 5'-o-(3-[(35)S]thio-triphosphate) binding was modulated by agonist binding to A(2A) receptors. A(2A) receptors occupation led to a decrease in the potency of A(1) receptor agonists. These results indicate that A(1) but not A(2A) receptors activation, likely occurring at low adenosine concentrations, engages a G(i)-mediated signaling; however, when both receptors are occupied by adenosine, there is an A(2A) receptor-mediated impairment of G(i)-operated transducing units. These findings are relevant to get insight into the complex relationships derived from co-expression of multiple neurotransmitter/neuromodulator receptors subtypes that individually are coupled to different G proteins. A further finding was the demonstration that the A(2A) receptor agonist, CGS 21680, at high concentrations able to significantly bind to the A(1) receptor, behaved as a partial agonist of the later receptor. This fact might be taken into account when characterizing CGS 21680 actions in human cells expressing A(1) receptors when the compound is used at micromolar concentrations.


Asunto(s)
Núcleo Caudado/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Complejos Multiproteicos/metabolismo , Receptor Cross-Talk/fisiología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Agonistas del Receptor de Adenosina A1 , Agonistas del Receptor de Adenosina A2 , Unión Competitiva/fisiología , Núcleo Caudado/efectos de los fármacos , Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/agonistas , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Humanos , Complejos Multiproteicos/agonistas , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología
10.
J Pharmacol Exp Ther ; 332(3): 876-85, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20026675

RESUMEN

The indoloquinolizidine-peptide 28 [(3S,12bR)-N-((S)-1-((S)-1-((S)-2-carbamoylpyrrolidin-1-yl)-3-(4-fluorophenyl)-1-oxopropan-2-ylamino)-4-cyclohexyl-1-oxobutan-2-yl)-1,2,3,4,6,7,12, 12b-octahydroindolo[2,3-a]quinolizine-3-carboxamide], a trans-indoloquinolizidine-peptide hybrid obtained by a combinatorial approach, behaved as an orthosteric ligand of all dopamine D(2)-like receptors (D(2), D(3), and D(4)) and dopamine D(5) receptors, but as a negative allosteric modulator of agonist and antagonist binding to striatal dopamine D(1) receptors. Indoloquinolizidine-peptide 28 induced a concentration-dependent hyperbolic increase in the antagonist apparent equilibrium dissociation constant values and altered the dissociation kinetics of dopamine D(1) receptor antagonists. The negative allosteric modulation was also found when agonist binding to D(1) receptors was assayed. Indoloquinolizidine-peptide 28 was a weak ago-allosteric modulator but markedly led to a decreased potency without decreasing the maximum partial/full agonist-mediated effect on cAMP levels. Compounds able to decrease the potency while preserving the efficacy of D(1) receptor agonists are promising for exploration in psychotic pathologies.


Asunto(s)
Oligopéptidos/farmacología , Quinolizidinas/farmacología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inhibidores , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Regulación Alostérica , Benzazepinas/farmacología , Línea Celular , AMP Cíclico/biosíntesis , Agonismo Parcial de Drogas , Humanos , Ligandos , Ensayo de Unión Radioligante , Receptores de Dopamina D2/metabolismo
11.
Trends Biochem Sci ; 30(7): 360-6, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15951182

RESUMEN

The existence of intramembrane receptor-receptor interactions for heptaspanning membrane receptors is now fully accepted, but a model considering dimers as the basic unit that binds to two ligand molecules is lacking. Here, we propose a two-state-dimer model in which the ligand-induced conformational changes from one component of the dimer are communicated to the other. Our model predicts cooperativity in binding, which is relevant because the other current models fail to address this phenomenon satisfactorily. Our two-state-dimer model also predicts the variety of responses elicited by full or partial agonists, neutral antagonists and inverse agonists. This model can aid our understanding of the operation of heptaspanning receptors and receptor channels, and, potentially, be important for improving the treatment of cardiovascular, neurological and neuropsychyatric diseases.


Asunto(s)
Unión Competitiva , Membrana Celular/química , Modelos Biológicos , Receptores de Superficie Celular/química , Animales , Membrana Celular/metabolismo , Dimerización , Humanos , Ligandos , Unión Proteica , Conformación Proteica , Receptores de Superficie Celular/metabolismo
12.
Elife ; 92020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32513388

RESUMEN

Early Huntington's disease (HD) include over-activation of dopamine D1 receptors (D1R), producing an imbalance in dopaminergic neurotransmission and cell death. To reduce D1R over-activation, we present a strategy based on targeting complexes of D1R and histamine H3 receptors (H3R). Using an HD mouse striatal cell model and HD mouse organotypic brain slices we found that D1R-induced cell death signaling and neuronal degeneration, are mitigated by an H3R antagonist. We demonstrate that the D1R-H3R heteromer is expressed in HD mice at early but not late stages of HD, correlating with HD progression. In accordance, we found this target expressed in human control subjects and low-grade HD patients. Finally, treatment of HD mice with an H3R antagonist prevented cognitive and motor learning deficits and the loss of heteromer expression. Taken together, our results indicate that D1R - H3R heteromers play a pivotal role in dopamine signaling and represent novel targets for treating HD.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Enfermedad de Huntington/metabolismo , Receptores de Dopamina D1 , Receptores Histamínicos H3 , Animales , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Piperidinas/farmacología , Receptores de Dopamina D1/química , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Corteza Visual/citología
13.
Trends Biochem Sci ; 28(5): 238-43, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12765835

RESUMEN

G-protein-coupled receptors form homomers and heteromers; agonist-induced conformational changes within interacting receptors of the oligomer modify their pharmacology, signalling and/or trafficking. When these receptors are activated, the oligomers rearrange and cluster and a novel mechanism of receptor-operation regulation by oligomer intercommunication is possible. This intercommunication would be assisted by components of the plasma membrane and by scaffolding proteins. Receptor cross-sensitization, cross-desensitization and novel, integrated receptor responses can then develop between oligomeric receptor complexes of the cluster without direct contact between them. This concept gives a new perspective to the understanding of neurotransmission and neuronal plasticity.


Asunto(s)
Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Dimerización , Humanos , Estructura Cuaternaria de Proteína , Transducción de Señal
14.
J Neurochem ; 107(1): 161-70, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18680557

RESUMEN

It has been shown that adenosine deaminase (ADA; EC 3.5.4.4) behaves as an ecto-enzyme anchored to membrane proteins, among them A(1) adenosine receptors (A(1)Rs). Bovine ADA interacts with A(1)Rs from many species and regulates agonists binding to receptors in an activity-independent form. However, it was not known whether human ADA exerted any effect on the agonist binding to human A(1)Rs, because of both technical difficulties in obtaining pure human ADA and tissues containing human A(1)Rs. In this study, human ADA was purified to homogeneity. Taking in consideration that A(1)Rs form homodimers and taking advantage of a new procedure to fit binding data to receptors dimers, which allows to calculate ligand dissociation constants and the degree of cooperativity between the two subunits in the dimer, here it is demonstrated that human ADA markedly enhances the agonist and antagonist affinity and abolishes the negative cooperativity on agonist binding to human striatal A(1)Rs. ADA also increases the ability of the agonist to decrease the forskolin-induced cAMP levels. The results show that human ADA, apart from reducing the adenosine concentration and thus preventing A(1)R desensitization, binds to A(1)R behaving as an allosteric effector that markedly enhances agonist affinity and increases receptor functionality. The physiological role of the interaction is to make receptors more sensitive to adenosine. This powerful regulation has important implications for the physiology and pharmacology of neuronal A(1)Rs.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Núcleo Caudado/metabolismo , Neuronas/metabolismo , Receptor de Adenosina A1/metabolismo , Adenosina/análogos & derivados , Anciano , Anciano de 80 o más Años , Regulación Alostérica/fisiología , Unión Competitiva/fisiología , Química Encefálica/fisiología , Femenino , Humanos , Masculino , Ensayo de Unión Radioligante , Especificidad de la Especie , Tritio/metabolismo
15.
Pharmacol Ther ; 116(3): 343-54, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17935788

RESUMEN

Almost all existing models that explain heptahelical G-protein-coupled receptor (GPCR) operation are based on the occurrence of monomeric receptor species. However, an increasing number of studies show that many G-protein-coupled heptahelical membrane receptors (HMR) are expressed in the plasma membrane as dimers. We here review the approaches for fitting ligand binding data that are based on the existence of receptor monomers and also the new ones based on the existence of receptor dimers. The reasons for equivocal interpretations of the fitting of data to receptor dimers, assuming they are monomers, are also discussed. A recently devised model for receptor dimers provides a new approach for fitting data that eventually gives more accurate and physiological relevant parameters. Fitting data using the new procedure gives not only the equilibrium dissociation constants for high- and low-affinity binding to receptor dimers but also a "cooperativity index" that reflects the molecular communication within the dimer. A comprehensive way to fit binding data from saturation isotherms and from competition assays to a dimer receptor model is reported and compared with the traditional way of fitting data. The new procedure can be applied to any receptor forming dimers; from receptor tyrosine kinases to intracellular receptors (e.g., estrogen receptor) and in general for ligand binding to proteins forming dimers.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Unión Competitiva , Dimerización , Humanos , Matemática , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Teóricos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química
16.
ScientificWorldJournal ; 8: 1088-97, 2008 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-18956124

RESUMEN

Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.


Asunto(s)
Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptores de Dopamina D2/metabolismo , Línea Celular , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Humanos , Riñón/embriología , Mediciones Luminiscentes , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transfección
17.
Neuropsychopharmacology ; 43(5): 964-977, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28102227

RESUMEN

The dorsal striatum is a key node for many neurobiological processes such as motor activity, cognitive functions, and affective processes. The proper functioning of striatal neurons relies critically on metabotropic receptors. Specifically, the main adenosine and endocannabinoid receptors present in the striatum, ie, adenosine A2A receptor (A2AR) and cannabinoid CB1 receptor (CB1R), are of pivotal importance in the control of neuronal excitability. Facilitatory and inhibitory functional interactions between striatal A2AR and CB1R have been reported, and evidence supports that this cross-talk may rely, at least in part, on the formation of A2AR-CB1R heteromeric complexes. However, the specific location and properties of these heteromers have remained largely unknown. Here, by using techniques that allowed a precise visualization of the heteromers in situ in combination with sophisticated genetically modified animal models, together with biochemical and pharmacological approaches, we provide a high-resolution expression map and a detailed functional characterization of A2AR-CB1R heteromers in the dorsal striatum. Specifically, our data unveil that the A2AR-CB1R heteromer (i) is essentially absent from corticostriatal projections and striatonigral neurons, and, instead, is largely present in striatopallidal neurons, (ii) displays a striking G protein-coupled signaling profile, where co-stimulation of both receptors leads to strongly reduced downstream signaling, and (iii) undergoes an unprecedented dysfunction in Huntington's disease, an archetypal disease that affects striatal neurons. Altogether, our findings may open a new conceptual framework to understand the role of coordinated adenosine-endocannabinoid signaling in the indirect striatal pathway, which may be relevant in motor function and neurodegenerative diseases.


Asunto(s)
Cuerpo Estriado/metabolismo , Estructura Cuaternaria de Proteína , Receptor de Adenosina A2A/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Animales , Humanos , Enfermedad de Huntington/metabolismo , Ratones , Vías Nerviosas/metabolismo , Subunidades de Proteína/biosíntesis
18.
J Neuroimmunol ; 185(1-2): 9-19, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17303252

RESUMEN

The pivotal role that glutamate plays in the functioning of the central nervous system is well established. Several glutamate receptors and glutamate transporters have been extensively described in the central nervous system where they, respectively mediate glutamate effects and regulates extracellular glutamate levels. Recent studies have shown that glutamate not only has a role as neurotransmitter, but also as an important immunomodulator. In this regard, several glutamate receptors have recently been described on the T-cell surface, whereas glutamate transporters have reportedly been expressed in antigen presenting cells such as dendritic cells and macrophages. On the other hand, an increasing number of reports have described a protective autoimmune mechanism in which autoantigen specific T cells in the central nervous system protect neurons against glutamate neurotoxicity. This review integrates and summarises different findings in this emerging area. A role of glutamate as a key immunomodulator in the initiation and development of T-cell-mediated immunity in peripheral tissues as well as in the central nervous system is suggested.


Asunto(s)
Sistema Nervioso Central/inmunología , Ácido Glutámico/inmunología , Inmunidad Celular , Neuroinmunomodulación , Linfocitos T/inmunología , Animales , Ácido Glutámico/metabolismo , Humanos , Activación de Linfocitos/inmunología , Receptores de Glutamato/inmunología , Receptores de Glutamato/metabolismo
19.
J Mol Neurosci ; 26(2-3): 125-32, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16012186

RESUMEN

Using pull-down and mass spectrometry experiments, we have previously demonstrated that adenosine A2A-dopamine D2 receptor-receptor heteromerization depends on an electrostatic interaction between an Arg-rich epitope from the third intracellular loop of the D2 receptor (217RRRRKR222) and two adjacent Asp residues (DD401-402) or a phosphorylated Ser (pS374) residue in the carboxyl terminus of the A2A receptor. It has been demonstrated recently that a specific region in the carboxyl terminus of the dopamine D1 receptor (L387-L416) and a specific region in the carboxyl terminus of the NR1-1 subunit of the NMDA receptor (E834-S938) are involved in D1-NMDA receptor-receptor heteromerization. Careful perusal of these interacting regions shows the presence of a phosphorylated serine (pS397) and adjacent glutamates (EE404-405) in the D1 receptor, whereas NR1-1 contains three adjacent Arg residues (RRR893-896). These epitopes are highly conserved in all species, a sign that the epitopes are likely to be involved in a physiologically significant activity. If similar epitopes are found to be involved in the formation of receptor heteromers other than A2A-D2 and D1-NMDA, the epitope-epitope electrostatic interaction might represent an important general mechanism underlying receptor- receptor interactions.


Asunto(s)
Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dimerización , Humanos , Espectrometría de Masas , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Conformación Proteica , Electricidad Estática
20.
J Mol Neurosci ; 25(2): 191-200, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15784967

RESUMEN

An interaction between adenosine A2A and dopamine D2 receptors has been demonstrated previously. It is generally found that agonist treatment internalizes receptors, including A2A and D2, whereas less is known of the long-term effects involved in the agonist-mediated trafficking of A2A and D2 receptors. Furthermore, the possible influence of the antagonists on receptor trafficking is still undefined. The present studies focus on the long-term effects of A2A and D2 agonist and D2 antagonist treatments on both A2A and D2 receptor trafficking studied at three different time intervals--3, 15, and 24 h. In addition, with the fluorescence resonance energy transfer technique, formation of heteromeric A2A and D2 receptor complexes was shown in the cotransfected CHO cell line. Confocal microscopy analysis showed that a 3-h treatment with the D2 agonist induced coaggregation of A2A/D2 receptors. These A2A/D2 receptor coaggregates internalized after 15 h with a recruitment of the receptors back to the cell membrane after 24 h. In contrast to the effects of the agonist treatment, a 3-h treatment with the D2-like antagonist raclopride increased both A2A and D2 immunoreactivity, indicating that the D2 antagonist stabilizes the D2 receptor and thereby reduces the internalization of both of the A2A and D2 receptors. Taken together, an activation of either A2A and D2 receptor or blockade of D2 receptors will cause long-lasting changes in A2A and D2 receptor trafficking.


Asunto(s)
Adenosina/análogos & derivados , Transporte de Proteínas/fisiología , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D2/metabolismo , Adenosina/farmacología , Animales , Antihipertensivos/farmacología , Células CHO , Cricetinae , Perros , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Fenetilaminas/farmacología , Quinpirol/farmacología , Racloprida/farmacología , Receptor de Adenosina A2A/genética , Receptores de Dopamina D2/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA