Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 146(10): 6912-6925, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38421821

RESUMEN

Most oxidation processes in common organic synthesis and chemical biology require transition metal catalysts or metalloenzymes. Herein, we report a detailed mechanistic study of a metal-free oxygen (O2) activation protocol on benzylamine/alcohols using simple quaternary alkylammonium-based ionic liquids to produce products such as amide, aldehyde, imine, and in some cases, even aromatized products. NMR and various control experiments established the product formation and reaction mechanism, which involved the conversion of molecular oxygen into a hydroperoxyl radical via a proton-coupled electron transfer process. Detection of hydrogen peroxide in the reaction medium using colorimetric analysis supported the proposed mechanism of oxygen activation. Furthermore, first-principles calculations using density functional theory (DFT) revealed that reaction coordinates and transition state spin densities have a unique spin conversion of triplet oxygen leading to formation of singlet products via a minimum energy crossing point. In addition to DFT, domain-based local pair natural orbital coupled cluster, (DLPNO-CCSD(T)), and complete active space self-consistent field, CASSCF(20,14) methods complemented the above findings. Partial density of states analysis showed stabilization of π* orbital of oxygen in the presence of ionic liquid, making it susceptible to hydrogen abstraction in a mild, metal-free condition. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis of reactant and ionic liquids clearly showed the absence of any significant transition metal contamination. The current results described the origin of O2 activation within the context of molecular orbital (MO) theory and opened up a new avenue for the use of ionic liquids as inexpensive, multifunctional and high-performance alternative to metal-based catalysts for O2 activation.

2.
J Comput Chem ; 45(4): 204-209, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37752737

RESUMEN

The DFT-level computational investigations into Gibbs free energies (ΔG) demonstrate that as the dielectric constant of the solvent increases, the stabilities of [M(NH3 )n ]2+/3+ (n = 4, 6; M = selected 3d transition metals) complexes decrease. However, there is no observed correlation between the stability of the complex and the solvent donor number. Analysis of the charge transfer and Wiberg bond indices indicates a dative-bond character in all the complexes. The solvent effect assessed through solvation energy is determined by the change in the solvent accessible surface area (SASA) and the change in the charge distribution that occurs during complex formation. It has been observed that the SASA and charge transfer are different in the different coordination numbers, resulting in a variation in the solvent effect on complex stability in different solvents. This ultimately leads to a change between the relative stability of complexes with different coordination numbers while increasing the solvent polarity for a few complexes. Moreover, the findings indicate a direct relationship between ΔΔG (∆Gsolvent -∆Ggas ) and ΔEsolv , which enables the computation of ΔG for the compounds in a particular solvent using only ΔGgas and ΔEsolv . This approach is less computationally expensive.

3.
Langmuir ; 40(17): 8820-8826, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38619546

RESUMEN

Hollow porous organic capsules (HPOCs) with an entrapped active catalyst have nanosized cavities, providing the benefits of a nanoreactor, as well as separation of the catalysts from the reaction medium via pores acting as a size-exclusion gate. Such purpose-built HPOCs with desired molecular weight cutoffs offer the advantages of semipermeable membrane separation and a sustainable chemical process that excludes energy-extensive separation. Here, we report a newly synthesized HPOC with an entrapped Pd(PPh3)2Cl2 as the catalyst for demonstrating a Suzuki-Miyaura coupling reaction as a proof of concept.

4.
Angew Chem Int Ed Engl ; 63(20): e202403218, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38497312

RESUMEN

The generally observed decrease of the electrostatic energy in the complex with increasing solvent polarity has led to the assumption that the stability of the complexes with ion-pair hydrogen bonds decreases with increasing solvent polarity. Besides, the smaller solvent-accessible surface area (SASA) of the complex in comparison with the isolated subsystems results in a smaller solvation energy of the latter, leading to a destabilization of the complex in the solvent compared to the gas phase. In our study, which combines Nuclear Magnetic Resonance, Infrared Spectroscopy experiments, quantum chemical calculations, and molecular dynamics (MD) simulations, we question the general validity of this statement. We demonstrate that the binding free energy of the ion-pair hydrogen-bonded complex between 2-fluoropropionic acid and n-butylamine (CH3CHFCOO-…NH3But+) increases with increased solvent polarity. This phenomenon is rationalized by a substantial charge transfer between the subsystems that constitute the ion-pair hydrogen-bonded complex. This unexpected finding introduces a new perspective to our understanding of solvation dynamics, emphasizing the interplay between solvent polarity and molecular stability within hydrogen-bonded systems.

5.
J Comput Chem ; 44(3): 329-333, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-35616117

RESUMEN

Here, the effect of solvent on the stability of non-covalent complexes, was studied. These complexes were from previously published S22, S66, and X40 datasets, which include hydrogen-, halogen- and dispersion-bonded complexes. It was shown that the charge transfer in the complex determines whether the complex is stabilized or destabilized in solvent.


Asunto(s)
Halógenos , Solventes , Enlace de Hidrógeno , Fenómenos Físicos , Termodinámica
6.
Chemistry ; 29(35): e202300635, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37066846

RESUMEN

The present work aims to determine to what extent the value of the dielectric constant of the solvent can influence the dative bond in Lewis electron pair bonding systems. For this purpose, two different systems, namely H3 B←NH3 and {Zn←(NH3 )}2+ , were studied in selected solvents with significantly different dielectric constants. Based on the results from state-of-the-art computational methods using DFT, constrained DFT, energy decomposition analyses, solvent accessible surface area, and charge transfer calculations, we found that the stability of the neutral H3 B←NH3 system increases with increasing solvent polarity. In contrast, the opposite trend is observed for the positively charged {Zn←(NH3 )}2+ . The observed changes are attributed to different charge redistributions in neutral and charged complexes, which are reflected by a different response to the solvent and are quantified by changes in solvation energies.


Asunto(s)
Electrones , Solventes
7.
Phys Chem Chem Phys ; 25(38): 25961-25964, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37727041

RESUMEN

In general, the stability of neutral complexes with dative bonds increases as the polarity of the solvent increases. This is based on the fact that the dipole moment of the complex increases as the charge transferred from the donor to the acceptor increases. As a result, the solvation energy of the complex becomes greater than that of subsystems, causing an increase in the stabilization energy with increasing solvent polarity. Our research confirms this assumption, but only when the charge transfer is sufficiently large. If it is below a certain threshold, the increase in the complex's dipole moment is insufficient to result in a higher solvation energy than subsystems. Thus, the magnitude of the charge transfer in the Lewis electron-pair system determines the stability trends of dative bonds with varying solvent polarity. We used molecular dynamics (MD) simulations based on an explicit solvent model, which is considered more reliable, to verify the results obtained with a continuous solvent model.

8.
J Phys Chem A ; 126(43): 7938-7943, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36263696

RESUMEN

It is generally assumed that hydrogen-bonded complexes are less stable in solvents than in the gas phase and that their stability decreases with increasing solvent polarity. This assumption is based on the size of the area available to the solvent, which is always smaller in the complex compared to the subsystems, thereby reducing the solvation energy. This reduction prevails over the amplification of the electrostatic hydrogen bond by the polar solvent. In this work, we show, using experimental IR spectroscopy and DFT calculations, that there are hydrogen-bonded complexes whose stability becomes greater with increasing solvent polarity. The explanation for this surprising stabilization is based on the analysis of the charge redistribution in the complex leading to increase of its dipole moment and solvation energy. Constrained DFT calculations have shown a dominant role of charge transfer over polarization effects for dipole moment and solvation energy.

9.
J Am Chem Soc ; 143(29): 10930-10939, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34266233

RESUMEN

A combined computational and experimental study reveals the character of the C60 complexes with piperidine formed under different reaction conditions. The IR and NMR experiments detect the dative bond complex, which according to NMR, is stable in the oxygen-free environment and transforms to the adduct complex in the presence of O2. Computational studies on the character of reaction channels rationalize the experimental observations. They show that the piperidine dimer rather than a single piperidine molecule is required for the complex formation. The calculations reveal significant differences in the dative bond and adduct complexes' character, suggesting a considerable versatility in their electronic properties modulated by the environment. This capability offers new application potential in several fields, such as in energy storage devices.

10.
Phys Chem Chem Phys ; 23(7): 4365-4375, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33589890

RESUMEN

The combined experimental-computational study has been performed to investigate the complexes formed between C70 carbon allotrope and piperidine. The results of FT-IR, H-NMR, and C-NMR measurements, together with the calculations based on the DFT approach and molecular dynamics simulations, prove the existence of dative/covalent bonding in C70piperidine complexes. The dative bond forms not only at the region of five- and six-membered rings, observed previously with C60, but also at the region formed of six-membered rings. The structure, i.e., nonplanarity, explains the observed dative bond formation. New findings on the character of interaction of secondary amines with C70 bring new aspects for the rational design of modified fullerenes and their applications in electrocatalysis, spintronics, and energy storage.

11.
J Phys Chem A ; 125(14): 2923-2931, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33823590

RESUMEN

The newly synthesized C18 ring is demonstrated as the smallest all-carbon acceptor that exhibits strong electron acceptance. This study provides a quantum-chemical investigation of the electron-acceptance behavior of monocyclic carbon rings with a particular emphasis on C18 through the formation of a dative bond with piperidine. The results show that Cn rings form strong dative bonds with piperidine, whereas the respective van der Waals (vdW) complexes are higher in energy. The main driving force is the release of angle strain of cyclo[n]carbons caused by the change in hybridization from sp to sp2 associated with the formation of the dative bond. On the contrary, other sp allotropes, diynes, favorably form vdW complexes. Molecular dynamics (MD) simulations support the stability of the dative bond throughout a simulation of 20 ps. This opens up the possibility of stabilizing highly reactive C18 through dative/covalent functionalization.

12.
Angew Chem Int Ed Engl ; 60(4): 1942-1950, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33022841

RESUMEN

The complexes formed between carbon allotropes (C20 , C60 fullerenes, graphene, and single-wall carbon nanotubes) and piperidine have been investigated by means of computational quantum chemical and experimental IR and NMR techniques. Alongside hydrogen bonds, the C⋅⋅⋅N tetrel bond, and lone-pair⋅⋅⋅π interactions, the unexpected N→C dative/covalent bond has been detected solely in complexes of fullerenes with piperidine. Non-planarity and five-member rings of carbon allotropes represent the key structural prerequisites for the unique formation of a dative N→C bond. The results of thermodynamics calculations, molecular dynamics simulations, and NMR and FTIR spectroscopy explain the specific interactions between C60 and piperidine. The differences in behavior of individual carbon allotropes in terms of dative bonding formation brings a new insight into their controllable organic functionalization.

13.
Phys Chem Chem Phys ; 22(30): 17033-17037, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32716452

RESUMEN

Fe(ii)-porphyrins play an important role in many reactions relevant to material science and biological processes, due to their closely lying spin states. Although the prevalent opinion is that these systems posses the triplet ground state, the recent experiment on Fe(ii)-phthalocyanine under conditions matching those of an isolated molecule points toward the quintet ground state. We present a thorough DFT and DMRG-based tailored CC study of Fe(ii)-porphyrin model, in which we address all previously discussed correlation effects. We examine the importance of geometrical parameters, the Fe-N distances in particular, and conclude that the system possesses the quintet ground state.

14.
Chemistry ; 24(51): 13413-13417, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30088667

RESUMEN

Iron(II) phthalocyanine (FePc) is an important member of the phthalocyanines family with potential applications in the fields of electrocatalysis, magnetic switching, electrochemical sensing, and phototheranostics. Despite the importance of electronic properties of FePc in these applications, a reliable determination of its ground-state is still challenging. Here we present combined state of the art computational methods and experimental approaches, that is, Mössbauer spectroscopy and Superconducting Quantum Interference Device (SQUID) magnetic measurements to identify the ground state of FePc. While the nature of the ground state obtained with density functional theory (DFT) depends on the functional, giving mostly the triplet state, multi-reference complete active space second-order perturbation theory (CASPT2) and density matrix renormalization group (DMRG) methods assign quintet as the FePc ground-state in gas-phase. This has been confirmed by the hyperfine parameters obtained from 57 Fe Mössbauer spectroscopy performed in frozen monochlorobenzene. The use of monochlorobenzene guarantees an isolated nature of the FePc as indicated by a zero Weiss temperature. The results open doors for exploring the ground state of other metal porphyrin molecules and their controlled spin transitions via external stimuli.

15.
Bioorg Med Chem ; 24(7): 1560-72, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26947959

RESUMEN

In the current study, sixteen novel derivatives of (R)-1-(6-fluorobenzo[d]thiazol-2-yl)ethanamine were synthesized as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. Chemical structures together with purity of the synthesized compounds were substantiated by IR, (1)H, (13)C, (19)F NMR, high resolution mass spectrometry and elemental analysis. The optical activities were confirmed by optical rotation measurements. The synthesized compounds were evaluated for their AChE and BChE inhibitory activities. In addition, the cytotoxicity of the most active compounds was investigated against human cell lines employing XTT tetrazolium salt reduction assay and xCELLigence system allowing a label-free assessment of the cells proliferation. Our results demonstrated that the inhibitory mechanism was confirmed to be pseudo-irreversible, in line with previous studies on carbamates. Compounds indicated as 3b, 3d, 3l and 3n showed the best AChE inhibitory activity of all the evaluated compounds and were up to tenfold more potent than standard drug rivastigmine. The binding mode was determined using state-of-the-art covalent docking and scoring methodology. The obtained data clearly demonstrated that 3b, 3d, 3l and 3n benzothiazole carbamates possess high inhibitory activity against AChE and BChE and concurrently negligible cytotoxicity. In conclusion, our results indicate, that these derivatives could be promising in an effective therapeutic intervention for Alzheimer's disease.


Asunto(s)
Acetilcolinesterasa/metabolismo , Benzotiazoles/farmacología , Butirilcolinesterasa/metabolismo , Carbamatos/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Benzotiazoles/síntesis química , Benzotiazoles/química , Carbamatos/síntesis química , Carbamatos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células Jurkat , Estructura Molecular , Relación Estructura-Actividad
17.
Chemistry ; 21(47): 16917-28, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26434943

RESUMEN

The reduction of N,C,N-chelated bismuth chlorides [C6H3-2,6-(CH=NR)2]BiCl2 [where R = tBu (1), 2',6'-Me2C6H3 (2), or 4'-Me2NC6H4 (3)] or N,C-chelated analogues [C6H2-2-(CH=N-2',6'-iPr2C6H3)-4,6-(tBu)2]BiCl2 (4) and [C6H2-2-(CH2NEt2)-4,6-(tBu)2]BiCl2 (5) is reported. Reduction of compounds 1-3 gave monomeric N,C,N-chelated bismuthinidenes [C6H3-2,6-(CH=NR)2]Bi [where R = tBu (6), 2',6'-Me2C6H3 (7) or 4'-Me2NC6H4 (8)]. Similarly, the reduction of 4 led to the isolation of the compound [C6H2-2-(CH=N-2',6'-iPr2C6H3)-4,6-(tBu)2]Bi (9) as an unprecedented two-coordinated bismuthinidene that has been structurally characterized. In contrast, the dibismuthene {[C6H2-2-(CH2NEt2)-4,6-(tBu)2]Bi}2 (10) was obtained by the reduction of 5. Compounds 6-10 were characterized by using (1)H and (13)C NMR spectroscopy and their structures, except for 7, were determined with the help of single-crystal X-ray diffraction analysis. It is clear that the structure of the reduced products (bismuthinidene versus dibismuthene) is ligand-dependent and particularly influenced by the strength of the N→Bi intramolecular interaction(s). Therefore, a theoretical survey describing the bonding situation in the studied compounds and related bismuth(I) systems is included. Importantly, we found that the C3NBi chelating ring in the two-coordinated bismuthinidene 9 exhibits significant aromatic character by delocalization of the bismuth lone pair.

18.
Phys Chem Chem Phys ; 17(32): 20814-21, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26213995

RESUMEN

The calculated properties of substituted carboranes such as dipole moment, polarisability, the magnitude of the σ-hole and the desolvation free energy are compared with these properties in comparable aromatic and cyclic aliphatic organic compounds. Dispersion and charge transfer energies are similar. However, the predicted strength of the halogen bonds with the same electron donor (based on the magnitude of the σ-hole) is larger for neutral C-vertex halogen-substituted carboranes than for their organic counterparts. Furthermore, the desolvation penalties of substituted carboranes are smaller than those of the corresponding organic compounds, which should further strengthen the halogen bonds of the former in the solvent. It is predicted that substituted carboranes have the potential to form stronger halogen bonds than comparable aromatic hydrocarbons, which will be even more pronounced in the medium. This theoretical study thus lays ground for the rational engineering of halogen bonding in inorganic crystals as well as in biomolecular complexes.

19.
Phys Chem Chem Phys ; 16(24): 12567-75, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24830460

RESUMEN

We have reported for the first time designed silylene superbases involving intramolecular H(+)···π interaction using density functional theory (DFT) calculations. The non-covalent interactions augment the proton affinity values by 13 kcal mol−1 in the designed superbase (1) compared to the acyclic silylene, [:Si(NMe2)2]. These divalent Si(II) compounds can act as powerful neutral organic superbases in gas and solvent phases. The DFT calculations performed at the B3LYP/6-311+G**//B3LYP/6-31+G* level of theory showed that the gas phase proton affinity of the paracyclophane based silylene superbase (8) reaches up to ~271.0 kcal mol(−1), which is the highest in paracyclophane Si(II) compounds. In tetrahydrofuran solvent medium, the calculated proton affinity of 8 was found to be 301.4 kcal mol(−1). The paracyclophane-based silylene systems are used for binding with small alkali metal ions. The calculated results showed that these systems selectively bind to lithium ions over sodium ions due to the small size of lithium ions which is well fitted in the space between the silicon atom and the phenyl ring. Furthermore, we have used the lithiated silylene 1 and 9 (which exhibits bis-protonation) for gas storage (CO and CO2). The calculated results showed both the lithiated silylene 1 and 9 bind preferentially to CO2 than CO. The calculated gravimetric density of CO2 is found to be 26.97 wt% for 9-Li2­(CO2)4. The energy decomposition analysis (EDA) has been performed to investigate the role of various contributing factors to the total binding strength of the CO2 or CO molecules with lithiated silylene superbases. EDA reveals that the electrostatic energy and polarization energy are the major driving force for higher total interaction energy of the lithiated-silylene­CO2 complex than the lithiated-silylene­CO complex. The lithiated silylene systems showed a higher binding energy with CO2 than the previously reported imidazopyridamine at the same level of theory. These results suggest that the lithiated silylene systems can be used as a more efficient CO2 storage material than the aforementioned system. The calculated desorption energies per CO2 and CO (ΔEDE) also indicate the recyclable property of the materials.

20.
Nat Commun ; 15(1): 5739, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982050

RESUMEN

Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical 'on-demand' direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA