Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 19(7): e1011018, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428793

RESUMEN

Human schistosomiasis is a neglected tropical disease caused by Schistosoma mansoni, S. haematobium, and S. japonicum. Praziquantel (PZQ) is the method of choice for treatment. Due to constant selection pressure, there is an urgent need for new therapies for schistosomiasis. Previous treatment of S. mansoni included the use of oxamniquine (OXA), a drug that is activated by a schistosome sulfotransferase (SULT). Guided by data from X-ray crystallography and Schistosoma killing assays more than 350 OXA derivatives were designed, synthesized, and tested. We were able to identify CIDD-0150610 and CIDD-0150303 as potent derivatives in vitro that kill (100%) of all three Schistosoma species at a final concentration of 71.5 µM. We evaluated the efficacy of the best OXA derivates in an in vivo model after treatment with a single dose of 100 mg/kg by oral gavage. The highest rate of worm burden reduction was achieved by CIDD -150303 (81.8%) against S. mansoni, CIDD-0149830 (80.2%) against S. haematobium and CIDD-066790 (86.7%) against S. japonicum. We have also evaluated the ability of the derivatives to kill immature stages since PZQ does not kill immature schistosomes. CIDD-0150303 demonstrated (100%) killing for all life stages at a final concentration of 143 µM in vitro and effective reduction in worm burden in vivo against S. mansoni. To understand how OXA derivatives fit in the SULT binding pocket, X-ray crystal structures of CIDD-0150303 and CIDD-0150610 demonstrate that the SULT active site will accommodate further modifications to our most active compounds as we fine tune them to increase favorable pharmacokinetic properties. Treatment with a single dose of 100 mg/kg by oral gavage with co-dose of PZQ + CIDD-0150303 reduced the worm burden of PZQ resistant parasites in an animal model by 90.8%. Therefore, we conclude that CIDD-0150303, CIDD-0149830 and CIDD-066790 are novel drugs that overcome some of PZQ limitations, and CIDD-0150303 can be used with PZQ in combination therapy.


Asunto(s)
Antihelmínticos , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Humanos , Praziquantel/farmacología , Praziquantel/química , Oxamniquina/farmacología , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/parasitología , Schistosoma mansoni , Terapia Combinada , Enfermedades Desatendidas/tratamiento farmacológico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
2.
Adv Exp Med Biol ; 1454: 75-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008264

RESUMEN

Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.


Asunto(s)
Esquistosomiasis , Humanos , Animales , Esquistosomiasis/parasitología , Esquistosomiasis/epidemiología , Esquistosomiasis/diagnóstico , Schistosoma/fisiología , Schistosoma/genética , Schistosoma/patogenicidad , Proteómica/métodos , Estadios del Ciclo de Vida , Genómica/métodos
3.
Mol Ecol ; 31(8): 2242-2263, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35152493

RESUMEN

Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.


Asunto(s)
Biomphalaria , Parásitos , Américas , Animales , Biomphalaria/genética , Biomphalaria/parasitología , Humanos , Schistosoma mansoni/genética , Senegal/epidemiología , Caracoles/genética , Tanzanía
4.
PLoS Pathog ; 15(10): e1007881, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31652296

RESUMEN

Do mutations required for adaptation occur de novo, or are they segregating within populations as standing genetic variation? This question is key to understanding adaptive change in nature, and has important practical consequences for the evolution of drug resistance. We provide evidence that alleles conferring resistance to oxamniquine (OXA), an antischistosomal drug, are widespread in natural parasite populations under minimal drug pressure and predate OXA deployment. OXA has been used since the 1970s to treat Schistosoma mansoni infections in the New World where S. mansoni established during the slave trade. Recessive loss-of-function mutations within a parasite sulfotransferase (SmSULT-OR) underlie resistance, and several verified resistance mutations, including a deletion (p.E142del), have been identified in the New World. Here we investigate sequence variation in SmSULT-OR in S. mansoni from the Old World, where OXA has seen minimal usage. We sequenced exomes of 204 S. mansoni parasites from West Africa, East Africa and the Middle East, and scored variants in SmSULT-OR and flanking regions. We identified 39 non-synonymous SNPs, 4 deletions, 1 duplication and 1 premature stop codon in the SmSULT-OR coding sequence, including one confirmed resistance deletion (p.E142del). We expressed recombinant proteins and used an in vitro OXA activation assay to functionally validate the OXA-resistance phenotype for four predicted OXA-resistance mutations. Three aspects of the data are of particular interest: (i) segregating OXA-resistance alleles are widespread in Old World populations (4.29-14.91% frequency), despite minimal OXA usage, (ii) two OXA-resistance mutations (p.W120R, p.N171IfsX28) are particularly common (>5%) in East African and Middle-Eastern populations, (iii) the p.E142del allele has identical flanking SNPs in both West Africa and Puerto Rico, suggesting that parasites bearing this allele colonized the New World during the slave trade and therefore predate OXA deployment. We conclude that standing variation for OXA resistance is widespread in S. mansoni.


Asunto(s)
Resistencia a Medicamentos/genética , Oxamniquina/uso terapéutico , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/genética , Esquistosomicidas/uso terapéutico , Adaptación Fisiológica/genética , Alelos , Animales , Cricetinae , Humanos , Niger , Omán , Polimorfismo de Nucleótido Simple/genética , Ratas , Esquistosomiasis mansoni/tratamiento farmacológico , Senegal , Caracoles/parasitología , Tanzanía
5.
Adv Exp Med Biol ; 1154: 45-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297759

RESUMEN

Schistosomiasis is a major cause of morbidity in the world; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects over 250 million people in 78 countries of the world and is responsible for some 280,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and research advances.


Asunto(s)
Esquistosomiasis , Animales , Humanos , Investigación/tendencias , Schistosoma/fisiología , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/parasitología , Esquistosomiasis/patología , Esquistosomiasis/prevención & control
6.
J Biol Chem ; 292(27): 11154-11164, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28536265

RESUMEN

The antischistosomal prodrug oxamniquine is activated by a sulfotransferase (SULT) in the parasitic flatworm Schistosoma mansoni. Of the three main human schistosome species, only S. mansoni is sensitive to oxamniquine therapy despite the presence of SULT orthologs in Schistosoma hematobium and Schistosoma japonicum The reason for this species-specific drug action has remained a mystery for decades. Here we present the crystal structures of S. hematobium and S. japonicum SULTs, including S. hematobium SULT in complex with oxamniquine. We also examined the activity of the three enzymes in vitro; surprisingly, all three are active toward oxamniquine, yet we observed differences in catalytic efficiency that implicate kinetics as the determinant for species-specific toxicity. These results provide guidance for designing oxamniquine derivatives to treat infection caused by all species of schistosome to combat emerging resistance to current therapy.


Asunto(s)
Resistencia a Medicamentos , Proteínas del Helminto/química , Oxamniquina , Schistosoma haematobium/enzimología , Schistosoma japonicum/enzimología , Sulfotransferasas/química , Animales , Cristalografía por Rayos X , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Schistosoma haematobium/genética , Schistosoma japonicum/genética , Sulfotransferasas/genética
7.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-19606141

RESUMEN

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Asunto(s)
Genoma de los Helmintos/genética , Schistosoma mansoni/genética , Animales , Evolución Biológica , Exones/genética , Genes de Helminto/genética , Interacciones Huésped-Parásitos/genética , Intrones/genética , Datos de Secuencia Molecular , Mapeo Físico de Cromosoma , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/embriología , Schistosoma mansoni/fisiología , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/parasitología
8.
BMC Genomics ; 15: 617, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25048426

RESUMEN

BACKGROUND: Identification of parasite genes that underlie traits such as drug resistance and host specificity is challenging using classical linkage mapping approaches. Extreme QTL (X-QTL) methods, originally developed by rodent malaria and yeast researchers, promise to increase the power and simplify logistics of linkage mapping in experimental crosses of schistosomes (or other helminth parasites), because many 1000s of progeny can be analysed, phenotyping is not required, and progeny pools rather than individuals are genotyped. We explored the utility of this method for mapping a drug resistance gene in the human parasitic fluke Schistosoma mansoni. RESULTS: We staged a genetic cross between oxamniquine sensitive and resistant parasites, then between two F1 progeny, to generate multiple F2 progeny. One group of F2s infecting hamsters was treated with oxamniquine, while a second group was left untreated. We used exome capture to reduce the size of the genome (from 363 Mb to 15 Mb) and exomes from pooled F2 progeny (treated males, untreated males, treated females, untreated females) and the two parent parasites were sequenced to high read depth (mean = 95-366×) and allele frequencies at 14,489 variants compared. We observed dramatic enrichment of alleles from the resistant parent in a small region of chromosome 6 in drug-treated male and female pools (combined analysis: Z = 11.07, p = 8.74 × 10(-29)). This region contains Smp_089320 a gene encoding a sulfotransferase recently implicated in oxamniquine resistance using classical linkage mapping methods. CONCLUSIONS: These results (a) demonstrate the utility of exome capture for generating reduced representation libraries in Schistosoma mansoni, and (b) provide proof-of-principle that X-QTL methods can be successfully applied to an important human helminth. The combination of these methods will simplify linkage analysis of biomedically or biologically important traits in this parasite.


Asunto(s)
Exoma/genética , Sitios de Carácter Cuantitativo , Schistosoma mansoni/genética , Animales , Mapeo Cromosómico , Cricetinae , Cruzamientos Genéticos , Femenino , Frecuencia de los Genes , Ligamiento Genético , Genotipo , Masculino , Oxamniquina/uso terapéutico , Fenotipo , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomicidas/uso terapéutico , Sulfotransferasas/metabolismo
9.
Parasitology ; 141(14): 1841-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24932595

RESUMEN

The potential of various quantitative lateral flow (LF) based assays utilizing up-converting phosphor (UCP) reporters for the diagnosis of schistosomiasis is reviewed including recent developments. Active infections are demonstrated by screening for the presence of regurgitated worm antigens (genus specific polysaccharides), whereas anti-Schistosoma antibodies may indicate ongoing as well as past infections. The circulating anodic antigen (CAA) in serum or urine (and potentially also saliva) is identified as the marker that may allow detection of single-worm infections. Quantitation of antigen levels is a reliable method to study effects of drug administration, worm burden and anti-fecundity mechanisms. Moreover, the ratio of CAA and circulating cathodic antigen (CCA) is postulated to facilitate identification of either Schistosoma mansoni or Schistosoma haematobium infections. The UCP-LF assays allow simultaneous detection of multiple targets on a single strip, a valuable feature for antibody detection assays. Although antibody detection in endemic regions is not a useful tool to diagnose active infections, it gains potential when the ratio of different classes of antibody specific for the parasite/disease can be determined. The UCP-LF antibody assay format allows this type of multiplexing, including testing a linear array of up to 20 different targets. Multiple test spots would allow detection of specific antibodies, e.g. against different Schistosoma species or other pathogens as soil-transmitted helminths. Concluding, the different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring.


Asunto(s)
Anticuerpos Antihelmínticos/análisis , Antígenos Helmínticos/análisis , Interacciones Huésped-Parásitos , Schistosoma/inmunología , Esquistosomiasis/diagnóstico , Animales , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antihelmínticos/orina , Antígenos Helmínticos/sangre , Antígenos Helmínticos/orina , Ensayo de Inmunoadsorción Enzimática , Heces/parasitología , Glicoproteínas/análisis , Proteínas del Helminto/análisis , Humanos , Recuento de Huevos de Parásitos , Sistemas de Atención de Punto , Polisacáridos/inmunología , Schistosoma/aislamiento & purificación , Esquistosomiasis/parasitología , Sensibilidad y Especificidad , Especificidad de la Especie
10.
Parasitology ; 140(9): 1085-95, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23673212

RESUMEN

SMYB1 is a Schistosoma mansoni protein highly similar to members of the Y-box binding protein family. Similar to other homologues, SMYB1 is able to bind double- and single-stranded DNA, as well as RNA molecules. The characterization of proteins involved in the regulation of gene expression in S. mansoni is of great importance for the understanding of molecular events that control morphological and physiological changes in this parasite. Here we demonstrate that SMYB1 is located in the cytoplasm of cells from different life-cycle stages of S. mansoni, suggesting that this protein is probably acting in mRNA metabolism in the cytoplasm and corroborating previous findings from our group that showed its ability to bind RNA. Protein-protein interactions are important events in all biological processes, since most proteins execute their functions through large supramolecular structures. Yeast two-hybrid screenings using SMYB1 as bait identified a partner in S. mansoni similar to the SmD3 protein of Drosophila melanogaster (SmRNP), which is important in the assembly of small nuclear ribonucleoprotein complexes. Also, pull-down assays were conducted using immobilized GST-SMYB1 proteins and confirmed the SMYB1-SmRNP interaction. The interaction of SMYB1 with a protein involved in mRNA processing suggests that it may act in processes such as turnover, transport and stabilization of RNA molecules.


Asunto(s)
Proteínas del Helminto/metabolismo , ARN de Helminto/metabolismo , ARN Mensajero/metabolismo , Schistosoma mansoni/metabolismo , Animales , Anticuerpos Antihelmínticos/sangre , Anticuerpos Antihelmínticos/inmunología , Transporte Biológico , Citoplasma/metabolismo , Femenino , Biblioteca de Genes , Proteínas del Helminto/genética , Inmunohistoquímica , Masculino , ARN de Helminto/genética , ARN Mensajero/genética , Conejos , Schistosoma mansoni/genética , Técnicas del Sistema de Dos Híbridos
11.
PLoS One ; 18(9): e0286107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37699039

RESUMEN

Nuclear receptors (NRs) are important transcriptional modulators in metazoans. Typical NRs possess a conserved DNA binding domain (DBD) and a ligand binding domain (LBD). Since we discovered a type of novel NRs each of them has two DBDs and single LBD (2DBD-NRs) more than decade ago, there has been very few studies about 2DBD-NRs. Recently, 2DBD-NRs have been only reported in Platyhelminths and Mollusca and are thought to be specific NRs to lophotrochozoan. In this study, we searched different databases and identified 2DBD-NRs in different animals from both protostomes and deuterostomes. Phylogenetic analysis shows that at least two ancient 2DBD-NR genes were present in the urbilaterian, a common ancestor of protostomes and deuterostomes. 2DBD-NRs underwent gene duplication and loss after the split of different animal phyla, most of them in a certain animal phylum are paralogues, rather than orthologues, like in other animal phyla. Amino acid sequence analysis shows that the conserved motifs in typical NRs are also present in 2DBD-NRs and they are gene specific. From our phylogenetic analysis of 2DBD-NRs and following the rule of Nomenclature System for the Nuclear Receptors, a nomenclature for 2DBD-NRs is proposed.


Asunto(s)
Duplicación de Gen , Receptores Citoplasmáticos y Nucleares , Animales , Filogenia , Bases de Datos Factuales , Receptores Citoplasmáticos y Nucleares/genética , ADN
12.
Artículo en Inglés | MEDLINE | ID: mdl-36758271

RESUMEN

The antischistosomal drug oxamniquine, OXA, requires activation by a sulfotransferase within the parasitic worm to enable killing. Examination of the pharmacokinetic/pharmacodynamic (PK/PD) relationship for OXA identified an in vitro-in vivo paradox with the maximal clinical plasma concentrations five-to ten-times lower than the efficacious concentration for in vitro schistosomal killing. The parasite resides in the vasculature between the intestine and the liver, and modeling the PK data to determine portal concentrations fits with in vitro studies and explains the required human dose. In silico models were used to predict murine dosing to recapitulate human conditions for OXA portal concentration and time course. Follow-up PK studies verified in mice that a 50-100 mg/kg oral gavage dose of OXA formulated in acetate buffer recapitulates the 20-40 mg/kg dose common in patients. OXA was rapidly cleared through a combination of metabolism and excretion into bile. OXA absorbance and tissue distribution were similar in wild-type and P-gp efflux transporter knockout mice. The incorporation of in vitro efficacy data and portal concentration was demonstrated for an improved OXA-inspired analog that has been shown to kill S. mansoni, S. haematobium, and S. japonicum, whereas OXA is only effective against S. mansoni. Second-generation OXA analogs should optimize both in vitro killing and physiochemical properties to achieve high portal concentration via rapid oral absorption, facilitated by favorable solubility, permeability, and minimal intestinal metabolism.


Asunto(s)
Oxamniquina , Esquistosomicidas , Humanos , Ratones , Animales , Oxamniquina/farmacología , Schistosoma , Esquistosomicidas/farmacología , Schistosoma mansoni
13.
Pharmaceutics ; 14(7)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35890311

RESUMEN

Oxamniquine (OXA) is a prodrug activated by a sulfotransferase (SULT) that was only active against Schistosoma mansoni. We have reengineered OXA to be effective against S. haematobium and S. japonicum. Three derivatives stand out, CIDD-0066790, CIDD-0072229, and CIDD-0149830 as they kill all three major human schistosome species. However, questions remain. Is the OXA mode of action conserved in derivatives? RNA-interference experiments demonstrate that knockdown of the SmSULT, ShSULT, and SjSULT results in resistance to CIDD-0066790. Confirming that the OXA-derivative mode of action is conserved. Next is the level of expression of the schistosome SULTs in each species, as well as changes in SULT expression throughout development in S. mansoni. Using multiple tools, our data show that SmSULT has higher expression compared to ShSULT and SjSULT. Third, is the localization of SULT in the adult, multicellular eucaryotic schistosome species. We utilized fluorescence in situ hybridization and uptake of radiolabeled OXA to determine that multiple cell types throughout the adult schistosome worm express SULT. Thus, we hypothesize the ability of many cells to express the sulfotransferase accounts for the ability of the OXA derivatives to kill adult worms. Our studies demonstrate that the OXA derivatives are able to kill all three human schistosome species and thus will be a useful complement to PZQ.

14.
BMC Genomics ; 12: 47, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21247453

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) constitute a class of single-stranded RNAs which play a crucial role in regulating development and controlling gene expression by targeting mRNAs and triggering either translation repression or messenger RNA (mRNA) degradation. miRNAs are widespread in eukaryotes and to date over 14,000 miRNAs have been identified by computational and experimental approaches. Several miRNAs are highly conserved across species. In Schistosoma, the full set of miRNAs and their expression patterns during development remain poorly understood. Here we report on the development and implementation of a homology-based detection strategy to search for miRNA genes in Schistosoma mansoni. In addition, we report results on the experimental detection of miRNAs by means of cDNA cloning and sequencing of size-fractionated RNA samples. RESULTS: Homology search using the high-throughput pipeline was performed with all known miRNAs in miRBase. A total of 6,211 mature miRNAs were used as reference sequences and 110 unique S. mansoni sequences were returned by BLASTn analysis. The existing mature miRNAs that produced these hits are reported, as well as the locations of the homologous sequences in the S. mansoni genome. All BLAST hits aligned with at least 95% of the miRNA sequence, resulting in alignment lengths of 19-24 nt. Following several filtering steps, 15 potential miRNA candidates were identified using this approach. By sequencing small RNA cDNA libraries from adult worm pairs, we identified 211 novel miRNA candidates in the S. mansoni genome. Northern blot analysis was used to detect the expression of the 30 most frequent sequenced miRNAs and to compare the expression level of these miRNAs between the lung stage schistosomula and adult worm stages. Expression of 11 novel miRNAs was confirmed by northern blot analysis and some presented a stage-regulated expression pattern. Three miRNAs previously identified from S. japonicum were also present in S. mansoni. CONCLUSION: Evidence for the presence of miRNAs in S. mansoni is presented. The number of miRNAs detected by homology-based computational methods in S. mansoni is limited due to the lack of close relatives in the miRNA repository. In spite of this, the computational approach described here can likely be applied to the identification of pre-miRNA hairpins in other organisms. Construction and analysis of a small RNA library led to the experimental identification of 14 novel miRNAs from S. mansoni through a combination of molecular cloning, DNA sequencing and expression studies. Our results significantly expand the set of known miRNAs in multicellular parasites and provide a basis for understanding the structural and functional evolution of miRNAs in these metazoan parasites.


Asunto(s)
Genoma de los Helmintos/genética , MicroARNs/genética , Schistosoma mansoni/genética , Animales , Biología Computacional
15.
PLoS One ; 16(8): e0250750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388160

RESUMEN

Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm (Schmidtea mediterranea) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm (Macrostomum lignano) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals studied to date. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.


Asunto(s)
Evolución Molecular , Filogenia , Platelmintos/genética , Receptores Citoplasmáticos y Nucleares/genética , Animales , Duplicación de Gen , Dedos de Zinc
16.
Mol Biochem Parasitol ; 245: 111412, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34492240

RESUMEN

During schistosomiasis, the paired Schistosoma mansoni female produces about 300 eggs each day. These eggs are responsible for the clinical picture and the transmission of the disease. During female development and egg production, fs800 is expressed only in female vitelline cells. Blast search of fs800 did not show similarities with any published sequences by NCBI. We hypothesize that the product of this gene plays a role in S. mansoni egg production. By using RNA interference to knockdown fs800 and quantitative PCR to measure the gene expression in the female schistosomes, we were able to demonstrate that fs800 product is crucial for viable egg production, it has no effect on worm health or male-female pairing. Our data suggest fs800 inhibition as a potential target to prevent transmission and pathology of schistosomiasis.


Asunto(s)
Esquistosomiasis mansoni , Esquistosomiasis , Animales , Femenino , Expresión Génica , Masculino , Schistosoma mansoni/genética
17.
Int J Parasitol Drugs Drug Resist ; 16: 140-147, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111649

RESUMEN

Human schistosomiasis is a debilitating, life-threatening disease affecting more than 229 million people in as many as 78 countries. There is only one drug of choice effective against all three major species of Schistosoma, praziquantel (PZQ). However, as with many monotherapies, evidence for resistance is emerging in the field and can be selected for in the laboratory. Previously used therapies include oxamniquine (OXA), but shortcomings such as drug resistance and affordability resulted in discontinuation. Employing a genetic, biochemical and molecular approach, a sulfotransferase (SULT-OR) was identified as responsible for OXA drug resistance. By crystallizing SmSULT- OR with OXA, the mode of action of OXA was determined. This information allowed a rational approach to novel drug design. Our team approach with schistosome biologists, medicinal chemists, structural biologists and geneticists has enabled us to develop and test novel drug derivatives of OXA to treat this disease. Using an iterative process for drug development, we have successfully identified derivatives that are effective against all three species of the parasite. One derivative CIDD-0149830 kills 100% of all three human schistosome species within 5 days. The goal is to generate a second therapeutic with a different mode of action that can be used in conjunction with praziquantel to overcome the ever-growing threat of resistance and improve efficacy. The ability and need to design, screen, and develop future, affordable therapeutics to treat human schistosomiasis is critical for successful control program outcomes.


Asunto(s)
Descubrimiento de Drogas , Esquistosomiasis , Animales , Humanos , Oxamniquina , Praziquantel/farmacología , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico
18.
Sci Transl Med ; 13(625): eabj9114, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936381

RESUMEN

Mass drug administration with praziquantel (PZQ) monotherapy is considered the mainstay for control and elimination of the parasites causing schistosomiasis in humans. This drug shows imperfect cure rates in the field, and parasites showing reduced PZQ response can be selected in the laboratory, but the extent of resistance in Schistosoma mansoni populations is unknown. We examined the genetic basis of the variation in response in a PZQ-selected S. mansoni population (SmLE-PZQ-R) in which 35% of the parasitic worms survive high-dose PZQ (73 micrograms per milliliter) treatment. We used genome-wide association to map loci underlying PZQ response and identified a transient receptor potential (Sm.TRPMPZQ) channel (Smp_246790) within the major chromosome 3 peak that is activated by nanomolar concentrations of PZQ. The PZQ response showed recessive inheritance and marker-assisted selection of parasites at a single Sm.TRPMPZQ SNP that produced populations of PZQ-enriched resistant (PZQ-ER) and PZQ-enriched sensitive (PZQ-ES) parasites, exhibiting >377-fold difference in PZQ response. The PZQ-ER parasites survived treatment in rodents at higher frequencies compared with PZQ-ES, and resistant parasites exhibited 2.25-fold lower expression of Sm.TRPMPZQ relative to sensitive parasites. Specific chemical blockers of Sm.TRPMPZQ enhanced PZQ resistance, whereas Sm.TRPMPZQ activators increased sensitivity. We surveyed Sm.TRPMPZQ sequence variations in 259 parasites from different global sites and identified one nonsense mutation that resulted in a truncated protein with no PZQ binding site. Our results demonstrate that Sm.TRPMPZQ underlies variation in PZQ responses in S. mansoni and provides an approach for monitoring emerging PZQ-resistant alleles in schistosome elimination programs.


Asunto(s)
Antihelmínticos , Parásitos , Esquistosomiasis mansoni , Canales de Potencial de Receptor Transitorio , Animales , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Estudio de Asociación del Genoma Completo , Parásitos/metabolismo , Praziquantel/farmacología , Praziquantel/uso terapéutico , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/epidemiología , Esquistosomiasis mansoni/parasitología , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/uso terapéutico
19.
Mol Biochem Parasitol ; 236: 111257, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32027942

RESUMEN

Hycanthone (HYC) is a retired drug formerly used to treat schistosomiasis caused by infection from Schistosoma mansoni and S. haematobium. Resistance to HYC was first observed in S. mansoni laboratory strains and in patients in the 1970s and the use of this drug was subsequently discontinued with the substitution of praziquantel (PZQ) as the single antischistosomal drug in the worldwide formulary. In endemic regions, multiple organizations have partnered with the World Health Organization to deliver PZQ for morbidity control and prevention. While the monotherapy reduces the disease burden, additional drugs are needed to use in combination with PZQ to stay ahead of potential drug resistance. HYC will not be reintroduced into the schistosomiasis drug formulary as a combination drug because it was shown to have adverse properties including mutagenic, teratogenic and carcinogenic activities. Oxamniquine (OXA) was used to treat S. mansoni infection in Brazil during the brief period of HYC use, until the 1990s. Its antischistosomal efficacy has been shown to work through the same mechanism as HYC and it does not possess the undesirable properties linked to HYC. OXA demonstrates cross-resistance in Schistosoma strains with HYC resistance and both are prodrugs requiring metabolic activation in the worm to toxic sulfated forms. The target activating enzyme has been identified as a sulfotransferase enzyme and is currently used as the basis for a structure-guided drug design program. Here, we characterize the sulfotransferases from S. mansoni and S. haematobium in complexes with HYC to compare and contrast with OXA-bound sulfotransferase crystal structures. Although HYC is discontinued for antischistosomal treatment, it can serve as a resource for design of derivative compounds without contraindication.


Asunto(s)
Hicantona , Oxamniquina/análogos & derivados , Esquistosomiasis/tratamiento farmacológico , Sulfotransferasas , Animales , Cristalización/métodos , Cristalografía por Rayos X/métodos , Diseño de Fármacos , Resistencia a Medicamentos , Humanos , Hicantona/efectos adversos , Hicantona/análogos & derivados , Hicantona/química , Oxamniquina/química , Oxamniquina/uso terapéutico , Praziquantel/uso terapéutico , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Schistosoma haematobium/efectos de los fármacos , Schistosoma haematobium/metabolismo , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Esquistosomicidas/uso terapéutico , Sulfotransferasas/efectos de los fármacos , Sulfotransferasas/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-32315953

RESUMEN

Human schistosomiasis is a disease which globally affects over 229 million people. Three major species affecting humans are Schistosoma mansoni, S. haematobium and S. japonicum. Previous treatment of S. mansoni includes the use of oxamniquine (OXA), a prodrug that is enzymatically activated in S. mansoni but is ineffective against S. haematobium and S. japonicum. The OXA activating enzyme was identified and crystallized, as being a S. mansoni sulfotransferase (SmSULT). S. haematobium and S. japonicum possess homologs of SmSULT (ShSULT and SjSULT) begging the question; why does oxamniquine fail to kill S. haematobium and S. japonicum adult worms? Investigation of the molecular structures of the sulfotransferases indicates that structural differences, specifically in OXA contact residues, do not abrogate OXA binding in the active sites as previously hypothesized. Data presented argue that the ability of SULTs to sulfate and thus activate OXA and its derivatives is linked to the ability of OXA to fit in the binding pocket to allow the transfer of a sulfur group.


Asunto(s)
Oxamniquina/farmacología , Schistosoma/efectos de los fármacos , Sulfotransferasas/química , Animales , Estructura Molecular , Schistosoma/metabolismo , Schistosoma haematobium/efectos de los fármacos , Schistosoma haematobium/metabolismo , Schistosoma japonicum/efectos de los fármacos , Schistosoma japonicum/metabolismo , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Esquistosomicidas/farmacología , Sulfotransferasas/efectos de los fármacos , Sulfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA