Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cerebellum ; 13(6): 751-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25172216

RESUMEN

Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated.


Asunto(s)
Antioxidantes/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Ácidos Grasos/toxicidad , Oxidación-Reducción/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Daño del ADN/efectos de los fármacos , Fluoresceínas/metabolismo , Glutatión/metabolismo , Homeostasis/efectos de los fármacos , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Malondialdehído/metabolismo , Melatonina/administración & dosificación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Ratas Wistar , Compuestos de Sulfhidrilo/metabolismo , alfa-Tocoferol/farmacología
2.
J Neurol Sci ; 346(1-2): 260-7, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25241940

RESUMEN

The role of excitotoxicity on the neuropathology of glutaric acidemia type I (GA I) is still under debate. Therefore, in the present work, we evaluated glutamate uptake by brain slices and glutamate binding to synaptic membranes, as well as glutamine synthetase activity in cerebral cortex and striatum from glutaryl-CoA dehydrogenase deficient (Gcdh(-/-)) mice along development (7, 15, 30 and 60 days of life) in the hopes of clarifying this matter. We also tested the influence of glutaric acid (GA) added exogenously on these parameters. [(3)H]Glutamate uptake was not significantly altered in cerebral cortex and striatum from Gcdh(-/-) mice, as compared to WT mice. However, GA provoked a significant decrease of [(3)H]glutamate uptake in striatum from both WT and Gcdh(-/-) mice older than 7 days. This inhibitory effect was more pronounced in Gcdh(-/-), as compared to WT mice. The use of a competitive inhibitor of glutamate astrocytic transporters indicated that the decrease of [(3)H]glutamate uptake caused by GA was due to the competition between this organic acid and glutamate for the same astrocytic transporter site. We also found that Na(+)-dependent [(3)H]glutamate binding (binding to transporters) was increased in the striatum from Gcdh(-/-) mice and that GA significantly diminished this binding both in striatum and cerebral cortex from Gcdh(-/-), but not from WT mice. Finally, we observed that glutamine synthetase activity was not changed in brain cortex and striatum from Gcdh(-/-) and WT mice and that GA was not able to alter this activity. It is therefore presumed that a disturbance of the glutamatergic neurotransmission system caused by GA may potentially be involved in the neuropathology of GA I, particularly in the striatum.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Encefalopatías Metabólicas/metabolismo , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Glutaratos/farmacología , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Encefalopatías Metabólicas/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Glutamato-Amoníaco Ligasa/metabolismo , Glutaril-CoA Deshidrogenasa/metabolismo , Ratones , Ratones Noqueados
3.
Life Sci ; 94(1): 67-73, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24211616

RESUMEN

AIMS: Peroxisomal biogenesis disorders (PBD) are inherited disorders clinically manifested by neurological symptoms and brain abnormalities, in which the cerebellum is usually involved. Biochemically, patients affected by these neurodegenerative diseases accumulate branched-chain fatty acids, including pristanic acid (Prist) in the brain and other tissues. MAIN METHODS: In the present investigation we studied the in vitro influence of Prist, at doses found in PBD, on oxidative phosphorylation, by measuring the activities of the respiratory chain complexes I-IV and ATP production, as well as on creatine kinase and synaptic Na(+), K(+)-ATPase activities in rat cerebellum. KEY FINDINGS: Prist significantly decreased complexes I-III (65%), II (40%) and especially II-III (90%) activities, without altering the activities of complex IV of the respiratory chain and creatine kinase. Furthermore, ATP formation and synaptic Na(+), K(+)-ATPase activity were markedly inhibited (80-90%) by Prist. We also observed that this fatty acid altered mitochondrial and synaptic membrane fluidity that may have contributed to its inhibitory effects on the activities of the respiratory chain complexes and Na(+), K(+)-ATPase. SIGNIFICANCE: Considering the importance of oxidative phosphorylation for mitochondrial homeostasis and of Na(+), K(+)-ATPase for the maintenance of cell membrane potential, the present data indicate that Prist compromises brain bioenergetics and neurotransmission in cerebellum. We postulate that these pathomechanisms may contribute to the cerebellar alterations observed in patients affected by PBD in which Prist is accumulated.


Asunto(s)
Cerebelo/fisiopatología , Ácidos Grasos/administración & dosificación , Fosforilación Oxidativa/efectos de los fármacos , Trastorno Peroxisomal/fisiopatología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Potenciales de la Membrana , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Complejos Multienzimáticos/metabolismo , Ratas , Ratas Wistar , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA