Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuroimage ; 252: 119034, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240300

RESUMEN

Neurons in the brain are seldom perfectly quiet. They continually receive input and generate output, resulting in highly variable patterns of ongoing activity. Yet the functional significance of this variability is not well understood. If brain signal variability is functionally relevant and serves as an important indicator of cognitive function, then it should be highly sensitive to the precise manner in which a cognitive system is engaged and/or relate strongly to differences in behavioral performance. To test this, we examined EEG activity in younger adults as they performed a cognitive skill learning task and during rest. Several measures of EEG variability and signal strength were calculated in overlapping time windows that spanned the trial interval. We performed a systematic examination of the factors that most strongly influenced the variability and strength of EEG activity. First, we examined the relative sensitivity of each measure to across-subject variation (within blocks) and across-block variation (within subjects). We found that the across-subject variation in EEG variability and signal strength was much stronger than the across-block variation. Second, we examined the sensitivity of each measure to different sources of across-block variation during skill acquisition. We found that key task-driven changes in EEG activity were best reflected in changes in the strength, rather than the variability, of EEG activity. Lastly, we examined across-subject variation in each measure and its relationship with behavior. We found that individual differences in response time measures were best reflected in individual differences in the variability, rather than the strength, of EEG activity. Importantly, we found that individual differences in EEG variability related strongly to stable indicators of subject identity rather than dynamic indicators of subject performance. We therefore suggest that EEG variability may provide a more sensitive subject-driven measure of individual differences than task-driven signal of interest.


Asunto(s)
Encéfalo , Electroencefalografía , Adulto , Encéfalo/fisiología , Cognición , Humanos , Individualidad , Descanso
2.
Neuroimage ; 237: 118197, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34029737

RESUMEN

Quality assurance (QA) is crucial in longitudinal and/or multi-site studies, which involve the collection of data from a group of subjects over time and/or at different locations. It is important to regularly monitor the performance of the scanners over time and at different locations to detect and control for intrinsic differences (e.g., due to manufacturers) and changes in scanner performance (e.g., due to gradual component aging, software and/or hardware upgrades, etc.). As part of the Ontario Neurodegenerative Disease Research Initiative (ONDRI) and the Canadian Biomarker Integration Network in Depression (CAN-BIND), QA phantom scans were conducted approximately monthly for three to four years at 13 sites across Canada with 3T research MRI scanners. QA parameters were calculated for each scan using the functional Biomarker Imaging Research Network's (fBIRN) QA phantom and pipeline to capture between- and within-scanner variability. We also describe a QA protocol to measure the full-width-at-half-maximum (FWHM) of slice-wise point spread functions (PSF), used in conjunction with the fBIRN QA parameters. Variations in image resolution measured by the FWHM are a primary source of variance over time for many sites, as well as between sites and between manufacturers. We also identify an unexpected range of instabilities affecting individual slices in a number of scanners, which may amount to a substantial contribution of unexplained signal variance to their data. Finally, we identify a preliminary preprocessing approach to reduce this variance and/or alleviate the slice anomalies, and in a small human data set show that this change in preprocessing can have a significant impact on seed-based connectivity measurements for some individual subjects. We expect that other fMRI centres will find this approach to identifying and controlling scanner instabilities useful in similar studies.


Asunto(s)
Neuroimagen Funcional/normas , Imagen por Resonancia Magnética/normas , Estudios Multicéntricos como Asunto/normas , Garantía de la Calidad de Atención de Salud/normas , Adulto , Neuroimagen Funcional/instrumentación , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Análisis de Componente Principal
3.
J Psychiatry Neurosci ; 46(2): E238-E246, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33729738

RESUMEN

Background: Upregulation of the endocannabinoid enzyme fatty acid amide hydrolase (FAAH) has been linked to abnormal activity in frontoamygdalar circuits, a hallmark of posttraumatic stress disorder. We tested the hypothesis that FAAH levels in the amygdala were negatively correlated with functional connectivity between the amygdala and prefrontal cortex, subserving stress and affect control. Methods: Thirty-one healthy participants completed positron emission tomography (PET) imaging with the FAAH probe [C-11]CURB, and resting-state functional MRI scans. Participants were genotyped for the FAAH polymorphism rs324420, and trait neuroticism was assessed. We calculated amygdala functional connectivity using predetermined regions of interest (including the subgenual ventromedial prefrontal cortex [sgvmPFC] and the dorsal anterior cingulate cortex [dACC]) and a seed-to-voxel approach. We conducted correlation analyses on functional connectivity, with amygdala [C-11]CURB binding as a variable of interest. Results: The strength of amygdala functional connectivity with the sgvmPFC and dACC was negatively correlated with [C-11]CURB binding in the amygdala (sgvmPFC: r = -0.38, q = 0.04; dACC: r = -0.44; q = 0.03). Findings were partly replicated using the seed-to-voxel approach, which showed a cluster in the ventromedial prefrontal cortex, including voxels in the dACC but not the sgvmPFC (cluster-level, family-wise error rate corrected p < 0.05). Limitations: We did not replicate earlier findings of a relationship between an FAAH polymorphism (rs324420) and amygdala functional connectivity. Conclusion: Our data provide preliminary evidence that lower levels of FAAH in the amygdala relate to increased frontoamygdalar functional coupling. Our findings were consistent with the role of FAAH in regulating brain circuits that underlie fear and emotion processing in humans.


Asunto(s)
Amidohidrolasas/metabolismo , Amígdala del Cerebelo/fisiología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Masculino , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo
4.
Neuroimage ; 170: 132-150, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27765611

RESUMEN

Recently, much attention has been focused on the definition and structure of the hippocampus and its subfields, while the projections from the hippocampus have been relatively understudied. Here, we derive a reliable protocol for manual segmentation of hippocampal white matter regions (alveus, fimbria, and fornix) using high-resolution magnetic resonance images that are complementary to our previous definitions of the hippocampal subfields, both of which are freely available at https://github.com/cobralab/atlases. Our segmentation methods demonstrated high inter- and intra-rater reliability, were validated as inputs in automated segmentation, and were used to analyze the trajectory of these regions in both healthy aging (OASIS), and Alzheimer's disease (AD) and mild cognitive impairment (MCI; using ADNI). We observed significant bilateral decreases in the fornix in healthy aging while the alveus and cornu ammonis (CA) 1 were well preserved (all p's<0.006). MCI and AD demonstrated significant decreases in fimbriae and fornices. Many hippocampal subfields exhibited decreased volume in both MCI and AD, yet no significant differences were found between MCI and AD cohorts themselves. Our results suggest a neuroprotective or compensatory role for the alveus and CA1 in healthy aging and suggest that an improved understanding of the volumetric trajectories of these structures is required.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Fórnix/anatomía & histología , Sustancia Gris/anatomía & histología , Hipocampo/anatomía & histología , Neuroimagen/métodos , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Atlas como Asunto , Región CA1 Hipocampal/anatomía & histología , Región CA1 Hipocampal/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Femenino , Fórnix/diagnóstico por imagen , Fórnix/patología , Sustancia Gris/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto Joven
5.
PLoS Comput Biol ; 13(3): e1005410, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28248957

RESUMEN

Data-driven models of functional magnetic resonance imaging (fMRI) activity can elucidate dependencies that involve the combination of multiple brain regions. Activity in some regions during resting-state fMRI can be predicted with high accuracy from the activities of other regions. However, it remains unclear in which regions activity depends on unique integration of multiple predictor regions. To address this question, sparse (parsimonious) models could serve to better determine key interregional dependencies by reducing false positives. We used resting-state fMRI data from 46 subjects, and for each region of interest (ROI) per subject we performed whole-brain recursive feature elimination (RFE) to select the minimal set of ROIs that best predicted activity in the modeled ROI. We quantified the dependence of activity on multiple predictor ROIs, by measuring the gain in prediction accuracy of models that incorporated multiple predictor ROIs compared to models that used a single predictor ROI. We identified regions that showed considerable evidence of multiregional integration and determined the key regions that contributed to their observed activity. Our models reveal fronto-parietal integration networks, little integration in primary sensory regions, as well as redundancy between some regions. Our study demonstrates the utility of whole-brain RFE to generate data-driven models with minimal sets of ROIs that predict activity with high accuracy. By determining the extent to which activity in each ROI depended on integration of signals from multiple ROIs, we find cortical integration networks during resting-state activity.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Descanso/fisiología , Comorbilidad , Modelos Estadísticos
6.
Brain Inj ; 32(2): 182-190, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29190189

RESUMEN

OBJECTIVE: The purpose of this study was to compare the working memory (WM) performance pre- and post-concussion, and investigate the relationships between performance changes and characteristics such as self-reported symptom scores, number of days post-injury and age at injury in 10-14-year-old youth. METHODS: Twenty-one youth (17 males) aged 10-14 years recruited from the community completed verbal and non-verbal WM tasks pre- and post-concussion. Performance was measured using accuracy and performance errors (false alarms and misses). Pre- and post-tests were compared using a Wilcoxon signed rank test, and effect size was determined using matched-pairs rank biserial correlation. RESULTS: Comparisons showed lower verbal WM accuracy at post-test, greater verbal and non-verbal WM false alarm errors at post-test, and greater verbal WM miss errors at post-test (all r ≥ 0.30). Correlations between performance and characteristics revealed associations between younger youth and lower non-verbal WM accuracy and more false alarms at post-test, as well as an association among non-verbal WM miss errors, higher PCS scores and fewer days since injury at post-test. CONCLUSIONS: The current study found lower WM performance in youth following concussion. Furthermore, the findings suggest that false alarm errors may be a useful screening measure acutely post-concussion when assessing WM performance in youth.


Asunto(s)
Conmoción Encefálica/complicaciones , Trastornos de la Memoria/etiología , Memoria a Corto Plazo/fisiología , Adolescente , Traumatismos en Atletas/complicaciones , Conmoción Encefálica/etiología , Niño , Correlación de Datos , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Índices de Gravedad del Trauma
7.
J Cogn Neurosci ; 27(9): 1708-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25848685

RESUMEN

Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.


Asunto(s)
Encéfalo/fisiología , Juicio/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Adaptación Psicológica/fisiología , Adulto , Mapeo Encefálico , Medidas del Movimiento Ocular , Movimientos Oculares , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Estimulación Luminosa , Adulto Joven
8.
Stroke ; 46(10): 2755-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26382176

RESUMEN

BACKGROUND AND PURPOSE: Poststroke cognitive impairment is typified by prominent deficits in processing speed and executive function. However, the underlying neuroanatomical substrates of executive deficits are not well understood, and further elucidation is needed. There may be utility in fractionating executive functions to delineate neural substrates. METHODS: One test amenable to fine delineation is the Trail Making Test (TMT), which emphasizes processing speed (TMT-A) and set shifting (TMT-B-A difference, proportion, quotient scores, and TMT-B set-shifting errors). The TMT was administered to 2 overt ischemic stroke cohorts from a multinational study: (1) a chronic stroke cohort (N=61) and (2) an acute-subacute stroke cohort (N=45). Volumetric quantification of ischemic stroke and white matter hyperintensities was done on magnetic resonance imaging, along with ratings of involvement of cholinergic projections, using the previously published cholinergic hyperintensities projections scale. Damage to the superior longitudinal fasciculus, which colocalizes with some cholinergic projections, was also documented. RESULTS: Multiple linear regression analyses were completed. Although larger infarcts (ß=0.37, P<0.0001) were associated with slower processing speed, cholinergic hyperintensities projections scale severity (ß=0.39, P<0.0001) was associated with all metrics of set shifting. Left superior longitudinal fasciculus damage, however, was only associated with the difference score (ß=0.17, P=0.03). These findings were replicated in both cohorts. Patients with ≥2 TMT-B set-shifting errors also had greater cholinergic hyperintensities projections scale severity. CONCLUSIONS: In this multinational stroke cohort study, damage to lateral cholinergic pathways and the superior longitudinal fasciculus emerged as significant neuroanatomical correlates for executive deficits in set shifting.


Asunto(s)
Trastornos del Conocimiento/diagnóstico , Neuroimagen/métodos , Accidente Cerebrovascular/complicaciones , Prueba de Secuencia Alfanumérica , Anciano , Trastornos del Conocimiento/etiología , Estudios de Cohortes , Función Ejecutiva/fisiología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
9.
Neuroimage ; 95: 217-31, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24657354

RESUMEN

The cerebellum has classically been linked to motor learning and coordination. However, there is renewed interest in the role of the cerebellum in non-motor functions such as cognition and in the context of different neuropsychiatric disorders. The contribution of neuroimaging studies to advancing understanding of cerebellar structure and function has been limited, partly due to the cerebellum being understudied as a result of contrast and resolution limitations of standard structural magnetic resonance images (MRI). These limitations inhibit proper visualization of the highly compact and detailed cerebellar foliations. In addition, there is a lack of robust algorithms that automatically and reliably identify the cerebellum and its subregions, further complicating the design of large-scale studies of the cerebellum. As such, automated segmentation of the cerebellar lobules would allow detailed population studies of the cerebellum and its subregions. In this manuscript, we describe a novel set of high-resolution in vivo atlases of the cerebellum developed by pairing MR imaging with a carefully validated manual segmentation protocol. Using these cerebellar atlases as inputs, we validate a novel automated segmentation algorithm that takes advantage of the neuroanatomical variability that exists in a given population under study in order to automatically identify the cerebellum, and its lobules. Our automatic segmentation results demonstrate good accuracy in the identification of all lobules (mean Kappa [κ]=0.731; range 0.40-0.89), and the entire cerebellum (mean κ=0.925; range 0.90-0.94) when compared to "gold-standard" manual segmentations. These results compare favorably in comparison to other publically available methods for automatic segmentation of the cerebellum. The completed cerebellar atlases are available freely online (http://imaging-genetics.camh.ca/cerebellum) and can be customized to the unique neuroanatomy of different subjects using the proposed segmentation pipeline (https://github.com/pipitone/MAGeTbrain).


Asunto(s)
Algoritmos , Atlas como Asunto , Cerebelo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anatomía Artística/métodos , Mapeo Encefálico , Femenino , Humanos , Masculino
10.
Cereb Cortex ; 23(9): 2044-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22772651

RESUMEN

Oligodendrocyte genes and white matter tracts have been implicated in the pathophysiology of schizophrenia and may play an important etiopathogenic role in cognitive dysfunction in schizophrenia. The objective of the present study in 60 chronic schizophrenia patients individually matched to 60 healthy controls was to determine whether 1) white matter tract integrity influences cognitive performance, 2) oligodendrocyte gene variants influence white matter tract integrity and cognitive performance, and 3) effects of oligodendrocyte gene variants on cognitive performance are mediated via white matter tract integrity. We used the partial least-squares multivariate approach to ascertain relationships among oligodendrocyte gene variants, integrity of cortico-cortical and subcortico-cortical white matter tracts, and cognitive performance. Robust relationships among oligodendrocyte gene variants, white matter tract integrity, and cognitive performance were found in both patients and controls. We also showed that effects of gene variants on cognitive performance were mediated by the integrity of white matter tracts. Our results were strengthened by bioinformatic analyses of gene variant function. To our knowledge, this is the first study that has brought together these lines of investigation in the same population and highlights the importance of the oligodendrocyte/white matter pathway in schizophrenia, particularly as it pertains to cognitive function.


Asunto(s)
Corteza Cerebral/patología , Cognición , Esquizofrenia/genética , Esquizofrenia/patología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glicoproteína Asociada a Mielina/genética , Proteínas del Tejido Nervioso/genética , Neurregulina-1/genética , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía , Polimorfismo de Nucleótido Simple , Receptor ErbB-4 , Adulto Joven
11.
PLoS One ; 19(3): e0300139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470896

RESUMEN

Adolescence is a sensitive developmental period for neural sex/gender differentiation. The present study used multiparametric mapping to better characterize adolescent white matter (WM) microstructure. WM microstructure was investigated using diffusion tensor indices (fractional anisotropy; mean, radial, and axial diffusivity [AD]) and quantitative T1 relaxometry (T1) in hormone therapy naïve adolescent cisgender girls, cisgender boys, and transgender boys (i.e., assigned female at birth and diagnosed with gender dysphoria). Diffusion indices were first analyzed for group differences using tract-based spatial statistics, which revealed a group difference in AD. Thus, two multiparametric and multivariate analyses assessed AD in conjunction with T1 relaxation time, and with respect to developmental proxy variables (i.e., age, serum estradiol, pubertal development, sexual attraction) thought to be relevant to adolescent brain development. The multivariate analyses showed a shared pattern between AD and T1 such that higher AD was associated with longer T1, and AD and T1 strongly related to all five developmental variables in cisgender boys (10 significant correlations, r range: 0.21-0.73). There were fewer significant correlations between the brain and developmental variables in cisgender girls (three correlations, r range: -0.54-0.54) and transgender boys (two correlations, r range: -0.59-0.77). Specifically, AD related to direction of sexual attraction (i.e., gynephilia, androphilia) in all groups, and T1 related to estradiol inversely in cisgender boys compared with transgender boys. These brain patterns may be indicative of less myelination and tissue density in cisgender boys, which corroborates other reports of protracted WM development in cisgender boys. Further, these findings highlight the importance of considering developmental trajectory when assessing the subtleties of neural structure associated with variations in sex, gender, and sexual attraction.


Asunto(s)
Sustancia Blanca , Masculino , Recién Nacido , Humanos , Femenino , Adolescente , Encéfalo , Identidad de Género , Imagen de Difusión por Resonancia Magnética , Estradiol
12.
Neuroimage ; 74: 254-65, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23415948

RESUMEN

The hippocampus is a neuroanatomical structure that has been widely studied in the context of learning, memory, stress, and neurodegeneration. Neuroanatomically, the hippocampus is subdivided into several subfields with intricate morphologies and complex three-dimensional relationships. Recent studies have demonstrated that the identification of different subfields is possible with high-resolution and -contrast image volumes acquired using ex vivo specimens in a small bore 9.4 T scanner and, more recently, in vivo, at 7 T. In these studies, the neuroanatomical definitions of boundaries between subfields are based upon salient differences in image contrast. Typically, the definition of subfields has not been possible using commonly available magnetic resonance (MR) scanners (i.e.: 1.5 or 3T) due to resolution and contrast limitations. To overcome the limited availability of post-mortem specimens and expertise in state-of-the-art high-field imaging, we propose a coupling of MR acquisition and detailed segmentation techniques that allow for the reliable identification of hippocampal anatomy (including subfields). High-resolution and -contrast T1- and T2-weighted image volumes were acquired from 5 volunteers (2 male; 3 female; age range: 29-57, avg. 37) using a clinical research-grade 3T scanner and have final super-sampled isotropic voxel dimensions of 0.3mm. We demonstrate that by using these acquisition techniques, our data results in contrast-to-noise ratios that compare well with high-resolution images acquired with long scan times using post-mortem data at higher field strengths. For the subfields, the cornus ammonis (CA) 1, CA2/CA3, CA4/dentate gyrus, stratum radiatum/stratum lacunosum/stratum moleculare, and subiculum were all labeled as separate structures. Hippocampal volumes are reported for each of the substructures and the hippocampus as a whole (range for hippocampus: 2456.72-3325.02 mm(3)). Intra-rater reliability of our manual segmentation protocol demonstrates high reliability for the whole hippocampus (mean Dice Kappa of 0.91; range 0.90-0.92) and for each of the subfields (range of Dice Kappas: 0.64-0.83). We demonstrate that our reliability is better than the Dice Kappas produced by simulating the following errors: a translation by a single voxel in all cardinal directions and 1% volumetric shrinkage and expansion. The completed hippocampal atlases are available freely online (info2.camh.net/kf-tigr/index.php/Hippocampus) and can be coupled with novel computational neuroanatomy techniques that will allow for them to be customized to the unique neuroanatomy of different subjects, and ultimately be utilized in different analysis pipelines.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Mapeo Encefálico/métodos , Hipocampo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad
13.
Hum Brain Mapp ; 34(4): 973-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22109837

RESUMEN

Semantic (svPPA) and nonfluent (nfPPA) variants of primary progressive aphasia are associated with distinct patterns of cortical atrophy and underlying pathology. Little is known, however, about their contrasting spread of white matter disruption and how this relates to grey matter (GM) loss. We undertook a structural MRI study to investigate this relationship. We used diffusion tensor imaging, tract-based spatial statistics, and voxel-based morphometry to examine fractional anisotropy (FA) and directional diffusivities in nine patients with svPPA and nine patients with nfPPA, and compared them to 16 matched controls after accounting for global GM atrophy. Significant differences in topography of white matter changes were found, with more ventral involvement in svPPA patients and more widespread frontal involvement in nfPPA individuals. However, each group had both ventral and dorsal tract changes, and both showed spread of diffusion abnormalities beyond sites of local atrophy. There was a clear dissociation in sensitivity of diffusion tensor imaging measures between groups. SvPPA patients showed widespread changes in FA and radial diffusivity, whereas changes in axial diffusivity were more restricted and proximal to sites of GM atrophy. NfPPA patients showed isolated changes in FA, but widespread axial and radial diffusivity changes. These findings reveal the extent of white matter disruption in these variants of PPA after accounting for GM loss. Further, they suggest that differences in the relative sensitivity of diffusion metrics may reflect differences in the nature of underlying white matter pathology in these two subtypes.


Asunto(s)
Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria/fisiopatología , Mapeo Encefálico , Encéfalo/patología , Fibras Nerviosas Mielínicas/patología , Semántica , Anciano , Anisotropía , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
14.
Nat Commun ; 14(1): 7044, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923728

RESUMEN

Regulation of biological processes according to a 24-hr rhythm is essential for the normal functioning of an organism. Temporal variation in brain MRI data has often been attributed to circadian or diurnal oscillations; however, it is not clear if such oscillations exist. Here, we provide evidence that diurnal oscillations indeed govern multiple MRI metrics. We recorded cerebral blood flow, diffusion-tensor metrics, T1 relaxation, and cortical structural features every three hours over a 24-hr period in each of 16 adult male controls and eight adult male participants with bipolar disorder. Diurnal oscillations are detected in numerous MRI metrics at the whole-brain level, and regionally. Rhythmicity parameters in the participants with bipolar disorder are similar to the controls for most metrics, except for a larger phase variation in cerebral blood flow. The ubiquitous nature of diurnal oscillations has broad implications for neuroimaging studies and furthers our understanding of the dynamic nature of the human brain.


Asunto(s)
Trastorno Bipolar , Ritmo Circadiano , Adulto , Humanos , Masculino , Ritmo Circadiano/fisiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen
15.
Neuroimage Rep ; 2(2): 100094, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37235067

RESUMEN

Background: Preclinical evidence suggests that increasing levels of the major endocannabinoid anandamide decreases anxiety and fear responses potentially through its effects in the amygdala. Here we used neuroimaging to test the hypothesis that lower fatty acid amide hydrolase (FAAH), the main catabolic enzyme for anandamide, is associated with a blunted amygdala response to threat. Methods: Twenty-eight healthy participants completed a positron emission tomography (PET) scan with the radiotracer for FAAH, [11C]CURB, as well as a block-design functional magnetic resonance imaging session during which angry and fearful faces meant to activate the amygdala were presented. Results: [11C]CURB binding in the amygdala as well as in the medial prefrontal cortex, cingulate and hippocampus correlated positively with blood-oxygen-level-dependent (BOLD) signal during processing of angry and fearful faces (pFWE < 0.05). Conclusion: Our finding that lower levels of FAAH in amygdala, medial prefrontal cortex, cingulate and hippocampus was associated with a dampened amygdala response to a threatening social cue aligns with preclinical and neuroimaging studies in humans and suggests the involvement of FAAH in modulating stress and anxiety in humans. The current neuroimaging study also lends support for the potential use of FAAH inhibitors to control amygdala hyperactivity, which is known to be involved in the pathophysiology of anxiety and trauma-related disorders.

16.
Front Endocrinol (Lausanne) ; 13: 903058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937791

RESUMEN

Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Brain functional connectivity in adolescents who experience GD may be associated with experienced gender (vs. assigned sex) and/or brain networks implicated in own-body perception. Furthermore, sexual orientation may be related to brain functional organization given commonalities in developmental mechanisms proposed to underpin GD and same-sex attractions. Here, we applied group independent component analysis to resting-state functional magnetic resonance imaging (rs-fMRI) BOLD timeseries data to estimate inter-network (i.e., between independent components) timeseries correlations, representing functional connectivity, in 17 GD adolescents assigned female at birth (AFAB) not receiving gender-affirming hormone therapy, 17 cisgender girls, and 15 cisgender boys (ages 12-17 years). Sexual orientation was represented by degree of androphilia-gynephilia and sexual attractions strength. Multivariate partial least squares analyses found that functional connectivity differed among cisgender boys, cisgender girls, and GD AFAB, with the largest difference between cisgender boys and GD AFAB. Regarding sexual orientation and age, the brain's intrinsic functional organization of GD AFAB was both similar to and different from cisgender girls, and both differed from cisgender boys. The pattern of group differences and the networks involved aligned with the hypothesis that brain functional organization is different among GD AFAB (vs. cisgender) adolescents, and certain aspects of this organization relate to brain areas implicated in own-body perception and self-referential thinking. Overall, brain functional organization of GD AFAB was generally more similar to that of cisgender girls than cisgender boys.


Asunto(s)
Disforia de Género , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Disforia de Género/patología , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Masculino , Conducta Sexual
17.
Neuroimage ; 58(3): 724-31, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21723395

RESUMEN

Evidence linking the ε4 allele of APOE to more severe brain MRI abnormalities in multiple sclerosis (MS) has been conflicting and limited to studies of lesion load and whole brain atrophy. The purpose of the present study was to determine whether the ε4 allele of APOE is associated with more extensive brain pathology in MS using structural and diffusion tensor MRI. Using a case-control design, 43 MS patients with the ε4 allele and 47 ε4 negative MS patients underwent structural and diffusion tensor imaging (DTI) at 3T. Hypo- and hyperintense lesion volumes, whole brain and medial temporal volumes, and DTI parameters (fractional anisotropy (FA) and mean diffusivity (MD)) in normal-appearing brain tissue and lesions were compared between the groups. ε4+ and ε4- MS patients were well-matched on demographic characteristics, disease variables, and proportions receiving disease-modifying therapy. ε4+ and ε4- patients did not differ on any MRI or DTI measure. This study refutes a role for the ε4 allele in MRI abnormalities in MS, particularly those linking ε4 to greater T1 hypointense lesion volume and brain atrophy. Previous work on this putative gene-MRI relationship is extended by comparing DTI measures within lesions and normal-appearing brain tissue. A lack of differences in medial temporal regions, areas that have been linked to ε4-associated changes in health and disease, further supports the conclusion that that ε4 is not associated with more subtle MRI markers of brain pathology in MS.


Asunto(s)
Apolipoproteína E4/genética , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Adulto , Alelos , Estudios de Casos y Controles , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad
18.
Brain ; 133(Pt 5): 1494-504, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20237131

RESUMEN

In healthy adult individuals, late life is a dynamic time of change with respect to the microstructural integrity of white matter tracts. Yet, elderly individuals are generally excluded from diffusion tensor imaging studies in schizophrenia. Therefore, we examined microstructural integrity of frontotemporal and interhemispheric white matter tracts in schizophrenia across the adult lifespan. Diffusion tensor imaging data from 25 younger schizophrenic patients (< or = 55 years), 25 younger controls, 25 older schizophrenic patients (> or = 56 years) and 25 older controls were analysed. Patients with schizophrenia in each group were individually matched to controls. Whole-brain tractography and clustering segmentation were employed to isolate white matter tracts. Groups were compared using repeated measures analysis of variance with 12 within-group measures of fractional anisotropy: (left and right) uncinate fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, inferior occipito-frontal fasciculus, cingulum bundle, and genu and splenium of the corpus callosum. For each white matter tract, fractional anisotropy was then regressed against age in patients and controls, and correlation coefficients compared. The main effect of group (F(3,92) = 12.2, P < 0.001), and group by tract interactions (F(26,832) = 1.68, P = 0.018) were evident for fractional anisotropy values. Younger patients had significantly lower fractional anisotropy than younger controls (Bonferroni-corrected alpha = 0.0042) in the left uncinate fasciculus (t(48) = 3.7, P = 0.001) and right cingulum bundle (t(48) = 3.6, P = 0.001), with considerable effect size, but the older groups did not differ. Schizophrenic patients did not demonstrate accelerated age-related decline compared with healthy controls in any white matter tract. To our knowledge, this is the first study to examine the microstructural integrity of frontotemporal white matter tracts across the adult lifespan in schizophrenia. The left uncinate fasciculus and right cingulum bundle are disrupted in younger chronic patients with schizophrenia compared with matched controls, suggesting that these white matter tracts are related to frontotemporal disconnectivity. The absence of accelerated age-related decline, or differences between older community-dwelling patients and controls, suggests that these patients may possess resilience to white matter disruption.


Asunto(s)
Envejecimiento , Imagen de Difusión por Resonancia Magnética , Lóbulo Frontal/patología , Esquizofrenia/diagnóstico , Lóbulo Temporal/patología , Adulto , Anciano , Anisotropía , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
J Clin Med ; 10(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477567

RESUMEN

Gender dysphoria (GD) is characterized by distress due to an incongruence between experienced gender and sex assigned at birth. Sex-differentiated brain regions are hypothesized to reflect the experienced gender in GD and may play a role in sexual orientation development. Magnetic resonance brain images were acquired from 16 GD adolescents assigned female at birth (AFAB) not receiving hormone therapy, 17 cisgender girls, and 14 cisgender boys (ages 12-17 years) to examine three morphological and microstructural gray matter features in 76 brain regions: surface area (SA), cortical thickness (CT), and T1 relaxation time. Sexual orientation was represented by degree of androphilia-gynephilia and sexual attraction strength. Multivariate analyses found that cisgender boys had larger SA than cisgender girls and GD AFAB. Shorter T1, reflecting denser, macromolecule-rich tissue, correlated with older age and stronger gynephilia in cisgender boys and GD AFAB, and with stronger attractions in cisgender boys. Thus, cortical morphometry (mainly SA) was related to sex assigned at birth, but not experienced gender. Effects of experienced gender were found as similarities in correlation patterns in GD AFAB and cisgender boys in age and sexual orientation (mainly T1), indicating the need to consider developmental trajectories and sexual orientation in brain studies of GD.

20.
J Magn Reson Imaging ; 31(6): 1311-22, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20512882

RESUMEN

PURPOSE: To determine the precision and accuracy of an automated method for segmenting white matter hyperintensities (WMH) on fast fluid-attenuated inversion-recovery (FLAIR) images in elderly brains at 3T. MATERIALS AND METHODS: FLAIR images from 18 individuals (60-82 years, 9 females) with WMH burdens ranging from 1-80 cm(3) were used. The protocol included the removal of clearly hyperintense voxels; two-class fuzzy C-means clustering (FCM); and thresholding to segment probable WMH. Two false-positive minimization (FPM) methods using white matter templates were tested. Precision was assessed by adding synthetic hyperintense voxels to brain slices. Accuracy was validated by comparing automatic and manual segmentations. Whole-brain, voxel-wise metrics of similarity, under- and overestimation were used to evaluate both precision and accuracy. RESULTS: Precision was high, as the lowest accuracy in the synthetic datasets was 93%. Both FPM strategies successfully improved overall accuracy. Whole-brain accuracy for the FCM segmentation alone ranged from 45%-81%, which improved to 75%-85% using the FPM strategies. CONCLUSION: The method was accurate across the range of WMH burden typically seen in the elderly. Accuracy levels achieved or exceeded those of other approaches using multispectral and/or more sophisticated pattern recognition methods.


Asunto(s)
Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Anciano , Anciano de 80 o más Años , Envejecimiento , Algoritmos , Automatización , Análisis por Conglomerados , Reacciones Falso Positivas , Femenino , Lógica Difusa , Humanos , Procesamiento de Imagen Asistido por Computador , Persona de Mediana Edad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA