Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Glycoconj J ; 40(6): 655-668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38100017

RESUMEN

Since the 1980s, it has been known that the administration of ganglioside GM1 to cultured cells induced or enhanced neuronal differentiation. GM1 mechanism of action relies on its direct interaction and subsequent activation of the membrane tyrosine kinase receptor, TrkA, which naturally serves as NGF receptor. This process is mediated by the sole oligosaccharide portion of GM1, the pentasaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal-(1-4)-ß-Glc. Here we detailed the minimum structural requirements of the oligosaccharide portion of GM1 for mediating the TrkA dependent neuritogenic processing. By in vitro and in silico biochemical approaches, we demonstrated that the minimal portion of GM1 required for the TrkA activation is the inner core of the ganglioside's oligosaccharide ß-Gal-(1-3)-ß-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-ß-Gal. The addition of a sialic acid residue at position 3 of the outer galactose of the GM1 oligosaccharide, which forms the oligosaccharide of GD1a, prevented the interaction with TrkA and the resulting neuritogenesis. On the contrary, the addition of a fucose residue at position 2 of the outer galactose, forming the Fucosyl-GM1 oligosaccharide, did not prevent the TrkA-mediated neuritogenesis.


Asunto(s)
Gangliósido G(M1) , Galactosa , Gangliósido G(M1)/química , Ácido N-Acetilneuramínico , Oligosacáridos/química
2.
Glycoconj J ; 38(1): 101-117, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33620588

RESUMEN

It is well over a century that glycosphingolipids are matter of interest in different fields of research. The hydrophilic oligosaccharide and the lipid moiety, the ceramide, both or separately have been considered in different moments as the crucial portion of the molecule, responsible for the role played by the glycosphingolipids associated to the plasma-membranes or to any other subcellular fraction. Glycosphingolipids are a family of compounds characterized by thousands of structures differing in both the oligosaccharide and the ceramide moieties, but among them, the nervous system monosialylated glycosphingolipid GM1, belonging to the group of gangliosides, has gained particular attention by a multitude of Scientists. In recent years, a series of studies have been conducted on the functional roles played by the hydrophilic part of GM1, its oligosaccharide, that we have named "OligoGM1". These studies allowed to shed new light on the mechanisms underlying the properties of GM1 defining the role of the OligoGM1 in determining precise interactions with membrane proteins instrumental for the neuronal functions, leaving to the ceramide the role of correctly positioning the GM1 in the membrane crucial for the oligosaccharide-protein interactions. In this review we aim to report the recent studies on the cascade of events modulated by OligoGM1, as the bioactive portion of GM1, to support neuronal differentiation and trophism together with preclinical studies on its potential to modify the progression of Parkinson's disease.


Asunto(s)
Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Oligosacáridos/química , Animales , Diferenciación Celular , Gangliósido G(M1)/farmacología , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligosacáridos/síntesis química , Oligosacáridos/metabolismo , Receptor trkA/metabolismo
3.
Adv Exp Med Biol ; 1325: 61-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495530

RESUMEN

Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.


Asunto(s)
Glicoesfingolípidos , Lípidos , Membrana Celular , Transducción de Señal
4.
Glycoconj J ; 37(5): 623-633, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32666337

RESUMEN

Human primary bronchial epithelial cells differentiated in vitro represent a valuable tool to study lung diseases such as cystic fibrosis (CF), an inherited disorder caused by mutations in the gene coding for the Cystic Fibrosis Transmembrane Conductance Regulator. In CF, sphingolipids, a ubiquitous class of bioactive lipids mainly associated with the outer layer of the plasma membrane, seem to play a crucial role in the establishment of the severe lung complications. Nevertheless, no information on the involvement of sphingolipids and their metabolism in the differentiation of primary bronchial epithelial cells are available so far. Here we show that ceramide and globotriaosylceramide increased during cell differentiation, whereas glucosylceramide and gangliosides content decreased. In addition, we found that apical plasma membrane of differentiated bronchial cells is characterized by a higher content of sphingolipids in comparison to the other cell membranes and that activity of sphingolipids catabolic enzymes associated with this membrane results altered with respect to the total cell activities. In particular, the apical membrane of CF cells was characterized by high levels of ceramide and glucosylceramide, known to have proinflammatory activity. On this basis, our data further support the role of sphingolipids in the onset of CF lung pathology.


Asunto(s)
Diferenciación Celular/genética , Fibrosis Quística/genética , Hidrolasas/genética , Esfingolípidos/genética , Bronquios/enzimología , Membrana Celular/enzimología , Membrana Celular/genética , Ceramidas/genética , Fibrosis Quística/enzimología , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Glucosilceramidas/genética , Humanos , Hidrolasas/química , Cultivo Primario de Células , Esfingolípidos/metabolismo
5.
Glycoconj J ; 37(3): 293-306, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32266604

RESUMEN

The crucial role of ganglioside GM1 in the regulation of neural homeostasis has been assessed by several studies. Recently we shed new light on the molecular basis underlying GM1 effects demonstrating that GM1 oligosaccharide directly binds TrkA receptor and triggers MAPK pathway activation leading to neuronal differentiation and protection. Following its exogenous administration, proteomic analysis revealed an increased expression of proteins involved in several biochemical mechanisms, including mitochondrial bioenergetics. Based on these data, we investigated the possible effect of GM1 oligosaccharide administration on mitochondrial function. We show that wild-type Neuro2a cells exposed to GM1 oligosaccharide displayed an increased mitochondrial density and an enhanced mitochondrial activity together with reduced reactive oxygen species levels. Interestingly, using a Neuro2a model of mitochondrial dysfunction, we found an increased mitochondrial oxygen consumption rate as well as increased complex I and II activities upon GM1 oligosaccharide administration. Taken together, our data identify GM1 oligosaccharide as a mitochondrial regulator that by acting at the plasma membrane level triggers biochemical signaling pathway inducing mitochondriogenesis and increasing mitochondrial activity. Although further studies are necessary, the capability to enhance the function of impaired mitochondria points to the therapeutic potential of the GM1 oligosaccharide for the treatment of pathologies where these organelles are compromised, including Parkinson's disease.


Asunto(s)
Gangliósido G(M1) , Neuroblastoma , Gangliósido G(M1)/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/metabolismo , Oligosacáridos/química , Proteómica
6.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325905

RESUMEN

Ganglioside GM1 (GM1) has been reported to functionally recover degenerated nervous system in vitro and in vivo, but the possibility to translate GM1's potential in clinical settings is counteracted by its low ability to overcome the blood-brain barrier (BBB) due to its amphiphilic nature. Interestingly, the soluble and hydrophilic GM1-oligosaccharide (OligoGM1) is able to punctually replace GM1 neurotrophic functions alone, both in vitro and in vivo. In order to take advantage of OligoGM1 properties, which overcome GM1's pharmacological limitations, here we characterize the OligoGM1 brain transport by using a human in vitro BBB model. OligoGM1 showed a 20-fold higher crossing rate than GM1 and time-concentration-dependent transport. Additionally, OligoGM1 crossed the barrier at 4 °C and in inverse transport experiments, allowing consideration of the passive paracellular route. This was confirmed by the exclusion of a direct interaction with the active ATP-binding cassette (ABC) transporters using the "pump out" system. Finally, after barrier crossing, OligoGM1 remained intact and able to induce Neuro2a cell neuritogenesis by activating the TrkA pathway. Importantly, these in vitro data demonstrated that OligoGM1, lacking the hydrophobic ceramide, can advantageously cross the BBB in comparison with GM1, while maintaining its neuroproperties. This study has improved the knowledge about OligoGM1's pharmacological potential, offering a tangible therapeutic strategy.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Gangliósido G(M1)/metabolismo , Transporte Biológico , Supervivencia Celular , Células Endoteliales , Humanos , Oligosacáridos/metabolismo , Permeabilidad
7.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599772

RESUMEN

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein is expressed at the apical plasma membrane (PM) of different epithelial cells. The most common mutation responsible for the onset of cystic fibrosis (CF), F508del, inhibits the biosynthesis and transport of the protein at PM, and also presents gating and stability defects of the membrane anion channel upon its rescue by the use of correctors and potentiators. This prompted a multiple drug strategy for F508delCFTR aimed simultaneously at its rescue, functional potentiation and PM stabilization. Since ganglioside GM1 is involved in the functional stabilization of transmembrane proteins, we investigated its role as an adjuvant to increase the effectiveness of CFTR modulators. According to our results, we found that GM1 resides in the same PM microenvironment as CFTR. In CF cells, the expression of the mutated channel is accompanied by a decrease in the PM GM1 content. Interestingly, by the exogenous administration of GM1, it becomes a component of the PM, reducing the destabilizing effect of the potentiator VX-770 on rescued CFTR protein expression/function and improving its stabilization. This evidence could represent a starting point for developing innovative therapeutic strategies based on the co-administration of GM1, correctors and potentiators, with the aim of improving F508del CFTR function.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Fibrosis Quística/tratamiento farmacológico , Gangliósido G(M1)/farmacología , Quinolonas/farmacología , Adyuvantes Inmunológicos/química , Aminofenoles/química , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/patología , Agonistas de los Canales de Cloruro/química , Agonistas de los Canales de Cloruro/farmacología , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Gangliósido G(M1)/química , Humanos , Mutación , Quinolonas/química , Terapias en Investigación
8.
J Neurochem ; 149(2): 231-241, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776097

RESUMEN

Recently, we highlighted that the ganglioside GM1 promotes neuroblastoma cells differentiation by activating the TrkA receptor through the formation of a TrkA-GM1 oligosaccharide complex at the cell surface. To study the TrkA-GM1 interaction, we synthesized two radioactive GM1 derivatives presenting a photoactivable nitrophenylazide group at the end of lipid moiety, 1 or at position 6 of external galactose, 2; and a radioactive oligosaccharide portion of GM1 carrying the nitrophenylazide group at position 1 of glucose, 3. The three compounds were singly administered to cultured neuroblastoma Neuro2a cells under established conditions that allow cell surface interactions. After UV activation of photoactivable compounds, the proteins were analyzed by PAGE separation. The formation of cross-linked TrkA-GM1 derivatives complexes was identified by both radioimaging and immunoblotting. Results indicated that the administration of compounds 2 and 3, carrying the photoactivable group on the oligosaccharide, led to the formation of a radioactive TrkA complex, while the administration of compound 1 did not. This underlines that the TrkA-GM1 interaction directly involves the GM1 oligosaccharide, but not the ceramide. To better understand how GM1 relates to the TrkA, we isolated plasma membrane lipid rafts. As expected, GM1 was found in the rigid detergent-resistant fractions, while TrkA was found as a detergent soluble fraction component. These results suggest that TrkA and GM1 belong to separate membrane domains: probably TrkA interacts by 'flopping' down its extracellular portion onto the membrane, approaching its interplay site to the oligosaccharide portion of GM1.


Asunto(s)
Diferenciación Celular/fisiología , Gangliósido G(M1)/metabolismo , Microdominios de Membrana/metabolismo , Neuroblastoma/metabolismo , Receptor trkA/metabolismo , Animales , Línea Celular , Ratones , Transducción de Señal/fisiología
9.
FASEB J ; 32(10): 5685-5702, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29746165

RESUMEN

Lysosomal accumulation of undegraded materials is a common feature of lysosomal storage diseases, neurodegenerative disorders, and the aging process. To better understand the role of lysosomal storage in the onset of cell damage, we used human fibroblasts loaded with sucrose as a model of lysosomal accumulation. Sucrose-loaded fibroblasts displayed increased lysosomal biogenesis followed by arrested cell proliferation. Notably, we found that reduced lysosomal catabolism and autophagy impairment led to an increase in sphingolipids ( i.e., sphingomyelin, glucosylceramide, ceramide, and the gangliosides GM3 and GD3), at both intracellular and plasma membrane (PM) levels. In addition, we observed an increase in the lysosomal membrane protein Lamp-1 on the PM of sucrose-loaded fibroblasts and a greater release of the soluble lysosomal protein cathepsin D in their extracellular medium compared with controls. These results indicate increased fusion between lysosomes and the PM, as also suggested by the increased activity of lysosomal glycosphingolipid hydrolases on the PM of sucrose-loaded fibroblasts. The inhibition of ß-glucocerebrosidase and nonlysosomal glucosylceramidase, both involved in ceramide production resulting from glycosphingolipid catabolism on the PM, partially restored cell proliferation. Our findings indicate the existence of a new molecular mechanism underlying cell damage triggered by lysosomal impairment.-Samarani, M., Loberto, N., Soldà, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F. A., Mauri, L., Ciampa, M. G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S. A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest.


Asunto(s)
Puntos de Control del Ciclo Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Esfingolípidos/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Línea Celular , Membrana Celular/genética , Fibroblastos/citología , Humanos , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Esfingolípidos/genética
10.
Glycoconj J ; 35(4): 397-402, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30145639

RESUMEN

Sphingolipid metabolism is an intricate network of several interdependent and co-regulated pathways. In addition to the mainstream biosynthetic and catabolic pathways, several processes, even if less important in contributing to the final tissue sphingolipid composition from the quantitative point of view, might become relevant when sphingolipid metabolism is for any reason dysregulated and concur to the onset of neuronal pathologies. The main subcellular sites involved in the mainstream metabolic pathway are represented by the Golgi apparatus (for the biosynthesis) and by the lysosomes (for catabolism). On the other hand, the minor collateral pathways are associated with the plasma membrane and membranes of other organelles, and likely play important roles in the local regulation of membrane dynamics and contribute to maintain a perfect membrane organization functional to the physiology of the cell. In this review, we will consider few aspects of the sphingolipid metabolic pathway depending by the dynamic of the membranes that seems to become relevant in neurodegenerative diseases.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Neuronas/metabolismo , Esfingolípidos/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/patología , Aparato de Golgi/genética , Aparato de Golgi/patología , Humanos , Lisosomas/genética , Lisosomas/patología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Neuronas/patología , Esfingolípidos/genética
11.
Adv Exp Med Biol ; 1112: 293-307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30637705

RESUMEN

Prostate cancer (PC) is one of the most common leading causes of cancer-related death in men. Currently, the main therapeutic approaches available for PC are based on the androgen deprivation and on radiotherapy. However, despite these treatments being initially effective in cancer remission, several patients undergo recurrence, developing a most aggressive and resistant PC.Emerging evidence showed that abiraterone acetate drug will reduce PC recurrence by a mechanism independent of the inhibition of Cytochrome P450 17α-hydroxylase/17,20-lyase. Here we describe the involvement in the abiraterone-mediated PC cell death of a particular class of bioactive lipids called sphingolipids (SL). Sphingolipids are components of plasma membrane (PM) that organize macromolecular complexes involved in the control of several signaling pathways including the tumor cell death induced by radiotherapy. Here, we show for the first time that both in androgen-sensitive and insensitive PC cells abiraterone and ionizing radiation induce a reorganization of the plasma membrane SL composition. This event is triggered by activation of the PM-associated glycohydrolases that induce the production of cytotoxic ceramide by the in situ hydrolyses of glycosphingolipids. Taken together our data open a new scenario on the SL involvement in the therapy of PC.


Asunto(s)
Androstenos/farmacología , Neoplasias de la Próstata/patología , Radiación Ionizante , Esfingolípidos/química , Línea Celular Tumoral , Homeostasis , Humanos , Masculino
12.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30308956

RESUMEN

The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.


Asunto(s)
Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Linfocitos/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/metabolismo , Mutación Missense , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , beta-Glucosidasa/genética , Alelos , Biomarcadores , Línea Celular , Activación Enzimática , Glucosilceramidasa/metabolismo , Glucosilceramidas/metabolismo , Humanos , beta-Glucosidasa/metabolismo
13.
J Neurochem ; 143(6): 645-659, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28796418

RESUMEN

GM1 ganglioside (II3 NeuAc-Gg4 Cer) is known to promote neurite formation in neuroblastoma cells by activating TrkA-MAPK pathway. The molecular mechanism by which GM1 is involved in the neurodifferentiation process is still unknown, however, in vitro and in vivo evidences have suggested that the oligosaccharide portion of this ganglioside could be involved. Here, we report that, similarly to the entire GM1 molecule, its oligosaccharide II3 NeuAc-Gg4, rather than its ceramide (Cer) portion is responsible for the neurodifferentiation process by augmenting neurite elongation and increasing the neurofilament protein expression in murine neuroblastoma cells, Neuro2a. Conversely, asialo-GM1, GM2 and GM3 oligosaccharides are not effective in neurite elongation on Neuro2a cells, whereas the effect exerted by the Fuc-GM1 oligosaccharide (IV2 αFucII3 Neu5Ac-Gg4 ) is similar to that exerted by GM1 oligosaccharide. The neurotrophic properties of GM1 oligosaccharide are exerted by activating the TrkA receptor and the following phosphorylation cascade. By photolabeling experiments performed with a nitrophenylazide containing GM1 oligosaccharide, labeled with tritium, we showed a direct interaction between the GM1 oligosaccharide and the extracellular domain of TrkA receptor. Moreover, molecular docking analyses confirmed that GM1 oligosaccharide binds the TrkA-nerve growth factor complex leading to a binding free energy of approx. -11.5 kcal/mol, acting as a bridge able to increase and stabilize the TrkA-nerve growth factor molecular interactions.


Asunto(s)
Gangliósido G(M1)/metabolismo , Neuritas/metabolismo , Neuroblastoma , Receptor trkA/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Gangliósido G(M1)/química , Ratones , Simulación del Acoplamiento Molecular , Oligosacáridos/química , Oligosacáridos/metabolismo , Transducción de Señal/fisiología
14.
Mediators Inflamm ; 2017: 1730245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29333001

RESUMEN

Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.


Asunto(s)
Fibrosis Quística/metabolismo , Fibrosis Quística/microbiología , Glicósido Hidrolasas/metabolismo , Infecciones por Pseudomonas/metabolismo , Esfingolípidos/metabolismo , beta-Glucosidasa/metabolismo , Bronquios/metabolismo , Bronquios/microbiología , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/microbiología , Fibrosis Quística/complicaciones , Glucosilceramidasa , Humanos , Mediadores de Inflamación/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos , Infecciones por Pseudomonas/complicaciones , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Transducción de Señal
15.
Glycoconj J ; 31(6-7): 449-59, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25129488

RESUMEN

The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.


Asunto(s)
Ceramidas/química , Radiación Ionizante , Glicósido Hidrolasas/metabolismo , Esfingomielinas/metabolismo
16.
J Cyst Fibros ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789319

RESUMEN

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

17.
ACS Pharmacol Transl Sci ; 7(6): 1807-1822, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38898954

RESUMEN

Over the past few years, l-iminosugars have revealed attractive pharmacological properties for managing rare diseases including Cystic Fibrosis (CF). The iminosugar N-butyl-l-deoxynojirimycin (l-NBDNJ, ent-1), prepared by a carbohydrate-based route, was herein evaluated for its anti-inflammatory and anti-infective potential in models of CF lung disease infection. A significant decrease in the bacterial load in the airways was observed in the murine model of Pseudomonas aeruginosa chronic infection in the presence of l-NBDNJ, also accompanied by a modest reduction of inflammatory cells. Mechanistic insights into the observed activity revealed that l-NBDNJ interferes with the expression of proteins regulating cytoskeleton assembly and organization of the host cell, downregulates the main virulence factors of P. aeruginosa involved in the host response, and affects pathogen adhesion to human cells. These findings along with the observation of the absence of an in vitro bacteriostatic/bactericidal action of l-NBDNJ suggest the potential use of this glycomimetic as an antivirulence agent in the management of CF lung disease.

18.
FEBS Open Bio ; 13(9): 1601-1614, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315117

RESUMEN

Cystic fibrosis (CF) is the most common inherited, life-limiting disorder in Caucasian populations. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to an impairment of protein expression and/or function. CFTR is a chloride/bicarbonate channel expressed at the apical surface of epithelial cells of different organs. Nowadays, more than 2100 CFTR genetic variants have been described, but not all of them cause CF. However, around 80-85% of the patients worldwide are characterized by the presence, at least in one allele, of the mutation F508del. CFTR mutations cause aberrant hydration and secretion of mucus in hollow organs. In the lungs, this condition favors bacterial colonization, allowing the development of chronic infections that lead to the onset of the CF lung disease, which is the main cause of death in patients. In recent years, evidence has reported that CFTR loss of function is responsible for alterations in a particular class of bioactive lipids, called sphingolipids (SL). SL are ubiquitously present in eukaryotic cells and are mainly asymmetrically located within the external leaflet of the plasma membrane, where they organize specific platforms capable of segregating a selected number of proteins. CFTR is associated with these platforms that are fundamental for its functioning. Considering the importance of SL in CFTR homeostasis, we attempt here to provide a critical overview of the literature to determine the role of these lipids in channel stability and activity, and whether their modulation in CF could be a target for new therapeutic approaches.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Mutación/genética , Membrana Celular/metabolismo , Lípidos
19.
J Cyst Fibros ; 22(4): 680-682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088636

RESUMEN

We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Ceramidas , Genotipo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Benzodioxoles , Aminofenoles , Mutación
20.
Biomedicines ; 11(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37238977

RESUMEN

Past evidence has shown that the exogenous administration of GM1 ganglioside slowed neuronal death in preclinical models of Parkinson's disease, a neurodegenerative disorder characterized by the progressive loss of dopamine-producing neurons: however, the physical and chemical properties of GM1 (i.e., amphiphilicity) limited its clinical application, as the crossing of the blood-brain barrier is denied. Recently, we demonstrated that the GM1 oligosaccharide head group (GM1-OS) is the GM1 bioactive portion that, interacting with the TrkA-NGF complex at the membrane surface, promotes the activation of a multivariate network of intracellular events regulating neuronal differentiation, protection, and reparation. Here, we evaluated the GM1-OS neuroprotective potential against the Parkinson's disease-linked neurotoxin MPTP, which destroys dopaminergic neurons by affecting mitochondrial bioenergetics and causing ROS overproduction. In dopaminergic and glutamatergic primary cultures, GM1-OS administration significantly increased neuronal survival, preserved neurite network, and reduced mitochondrial ROS production enhancing the mTOR/Akt/GSK3ß pathway. These data highlight the neuroprotective efficacy of GM1-OS in parkinsonian models through the implementation of mitochondrial function and reduction in oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA