Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 192(6): 887-903, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35390317

RESUMEN

Activation of constitutive androstane receptor (CAR) transcription factor by xenobiotics promotes hepatocellular proliferation, promotes hypertrophy without liver injury, and induces drug metabolism genes. Previous work demonstrated that lymphocyte-specific protein-1 (LSP1), an F-actin binding protein and gene involved in human hepatocellular carcinoma, suppresses hepatocellular proliferation after partial hepatectomy. The current study investigated the role of LSP1 in liver enlargement induced by chemical mitogens, a regenerative process independent of tissue loss. 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a direct CAR ligand and strong chemical mitogen, was administered to global Lsp1 knockout and hepatocyte-specific Lsp1 transgenic (TG) mice and measured cell proliferation, hypertrophy, and expression of CAR-dependent drug metabolism genes. TG livers displayed a significant decrease in Ki-67 labeling and liver/body weight ratios compared with wild type on day 2. Surprisingly, this was reversed by day 5, due to hepatocyte hypertrophy. There was no difference in CAR-regulated drug metabolism genes between wild type and TG. TG livers displayed increased Yes-associated protein (YAP) phosphorylation, decreased nuclear YAP, and direct interaction between LSP1 and YAP, suggesting LSP1 suppresses TCPOBOP-driven hepatocellular proliferation, but not hepatocyte volume, through YAP. Conversely, loss of LSP1 led to increased hepatocellular proliferation on days 2, 5, and 7. LSP1 selectively suppresses CAR-induced hepatocellular proliferation, but not drug metabolism, through the interaction of LSP1 with YAP, supporting the role of LSP1 as a selective growth suppressor.


Asunto(s)
Neoplasias Hepáticas , Xenobióticos , Animales , Proliferación Celular , Receptor de Androstano Constitutivo , Hepatocitos/metabolismo , Hipertrofia/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Linfocitos , Ratones , Proteínas de Microfilamentos , Xenobióticos/metabolismo , Xenobióticos/farmacología , Proteínas Señalizadoras YAP
2.
Am J Pathol ; 192(9): 1259-1281, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35718058

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an epidemic affecting 30% of the US population. It is characterized by insulin resistance, and by defective lipid metabolism and mitochondrial dysfunction in the liver. SLC25A34 is a major repressive target of miR-122, a miR that has a central role in NAFLD and liver cancer. However, little is known about the function of SLC25A34. To investigate SLC25A34 in vitro, mitochondrial respiration and bioenergetics were examined using hepatocytes depleted of Slc25a34 or overexpressing Slc25a34. To test the function of SLC25A34 in vivo, a hepatocyte-specific knockout mouse was generated, and loss of SLC25A34 was assessed in mice maintained on a chow diet and a fast-food diet (FFD), a model for NAFLD. Hepatocytes depleted of Slc25a34 displayed increased mitochondrial biogenesis, lipid synthesis, and ADP/ATP ratio; Slc25a34 overexpression had the opposite effect. In the knockout model on chow diet, SLC25A34 loss modestly affected liver function (altered glucose metabolism was the most pronounced defect). RNA-sequencing revealed changes in metabolic processes, especially fatty acid metabolism. After 2 months on FFD, knockouts had a more severe phenotype, with increased lipid content and impaired glucose tolerance, which was attenuated after longer FFD feeding (6 months). This work thus presents a novel model for studying SLC25A34 in vivo in which SLC25A34 plays a role in mitochondrial respiration and bioenergetics during NAFLD.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
3.
Am J Physiol Renal Physiol ; 322(1): F14-F26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747197

RESUMEN

The multiligand receptors megalin (Lrp2) and cubilin (Cubn) and their endocytic adaptor protein Dab2 (Dab2) play essential roles in maintaining the integrity of the apical endocytic pathway of proximal tubule (PT) cells and have complex and poorly understood roles in the development of chronic kidney disease. Here, we used RNA-sequencing and CRISPR/Cas9 knockout (KO) technology in a well-differentiated cell culture model to identify PT-specific transcriptional changes that are directly consequent to the loss of megalin, cubilin, or Dab2 expression. KO of Lrp2 had the greatest transcriptional effect, and nearly all genes whose expression was affected in Cubn KO and Dab2 KO cells were also changed in Lrp2 KO cells. Pathway analysis and more granular inspection of the altered gene profiles suggested changes in pathways with immunomodulatory functions that might trigger the pathological changes observed in KO mice and patients with Donnai-Barrow syndrome. In addition, differences in transcription patterns between Lrp2 and Dab2 KO cells suggested the possibility that altered spatial signaling by aberrantly localized receptors contributes to transcriptional changes upon the disruption of PT endocytic function. A reduction in transcripts encoding sodium-glucose cotransporter isoform 2 was confirmed in Lrp2 KO mouse kidney lysates by quantitative PCR analysis. Our results highlight the role of megalin as a master regulator and coordinator of ion transport, metabolism, and endocytosis in the PT. Compared with the studies in animal models, this approach provides a means to identify PT-specific transcriptional changes that are directly consequent to the loss of these target genes.NEW & NOTEWORTHY Megalin and cubilin receptors together with their adaptor protein Dab2 represent major components of the endocytic machinery responsible for efficient uptake of filtered proteins by the proximal tubule (PT). Dab2 and megalin expression have been implicated as both positive and negative modulators of kidney disease. We used RNA sequencing to knock out CRISPR/Cas9 cubilin, megalin, and Dab2 in highly differentiated PT cells to identify PT-specific changes that are directly consequent to knockout of each component.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Receptores de Superficie Celular/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Células Cultivadas , Bases de Datos Genéticas , Redes Reguladoras de Genes , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Hernias Diafragmáticas Congénitas/genética , Hernias Diafragmáticas Congénitas/metabolismo , Hernias Diafragmáticas Congénitas/patología , Humanos , Túbulos Renales Proximales/patología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Ratones Noqueados , Monodelphis , Miopía/genética , Miopía/metabolismo , Miopía/patología , Proteinuria/genética , Proteinuria/metabolismo , Proteinuria/patología , Receptores de Superficie Celular/genética , Defectos Congénitos del Transporte Tubular Renal/genética , Defectos Congénitos del Transporte Tubular Renal/metabolismo , Defectos Congénitos del Transporte Tubular Renal/patología
4.
Hepatology ; 73(5): 2005-2022, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32794202

RESUMEN

BACKGROUND AND AIMS: Constitutive androstane receptor (CAR) agonists, such as 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), are known to cause robust hepatocyte proliferation and hepatomegaly in mice along with induction of drug metabolism genes without any associated liver injury. Yes-associated protein (Yap) is a key transcription regulator that tightly controls organ size, including that of liver. Our and other previous studies suggested increased nuclear localization and activation of Yap after TCPOBOP treatment in mice and the potential role of Yap in CAR-driven proliferative response. Here, we investigated a direct role of Yap in CAR-driven hepatomegaly and hepatocyte proliferation using hepatocyte-specific Yap-knockout (KO) mice. APPROACH AND RESULTS: Adeno-associated virus 8-thyroxine binding globulin promoter-Cre recombinase vector was injected to Yap-floxed mice for achieving hepatocyte-specific Yap deletion followed by TCPOBOP treatment. Yap deletion did not decrease protein expression of CAR or CAR-driven induction of drug metabolism genes (including cytochrome P450 [Cyp] 2b10, Cyp2c55, and UDP-glucuronosyltransferase 1a1 [Ugt1a1]). However, Yap deletion substantially reduced TCPOBOP-induced hepatocyte proliferation. TCPOBOP-driven cell cycle activation was disrupted in Yap-KO mice because of delayed (and decreased) induction of cyclin D1 and higher expression of p21, resulting in decreased phosphorylation of retinoblastoma protein. Furthermore, the induction of other cyclins, which are sequentially involved in progression through cell cycle (including cyclin E1, A2, and B1), and important mitotic regulators (such as Aurora B kinase and polo-like kinase 1) was remarkably reduced in Yap-KO mice. Microarray analysis revealed that 26% of TCPOBOP-responsive genes that were mainly related to proliferation, but not to drug metabolism, were altered by Yap deletion. Yap regulated these proliferation genes through alerting expression of Myc and forkhead box protein M1, two critical transcriptional regulators of CAR-mediated hepatocyte proliferation. CONCLUSIONS: Our study revealed an important role of Yap signaling in CAR-driven hepatocyte proliferation; however, CAR-driven induction of drug metabolism genes was independent of Yap.


Asunto(s)
Proliferación Celular/fisiología , Receptor de Androstano Constitutivo/fisiología , Hepatocitos/fisiología , Inactivación Metabólica/genética , Proteínas Señalizadoras YAP/fisiología , Animales , Ciclo Celular , Femenino , Regulación de la Expresión Génica , Genes/genética , Hepatocitos/metabolismo , Humanos , Inactivación Metabólica/fisiología , Regeneración Hepática , Ratones Noqueados , Transcriptoma
5.
Adv Exp Med Biol ; 1360: 87-99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505164

RESUMEN

Injury and growth stimulation both remarkably increase the hepatic expression of Gadd45ß. This contrasts with expression in liver cancer, where promoter methylation frequently silences Gadd45ß, due to a suppressive function that is often proapoptotic. In normal hepatocytes, Gadd45ß facilitates cell survival, growth, and proliferation. Gadd45ß binds MKK7-downstream of TNFα and its receptors-to prevent this kinase from activating JNK2. Hence, the Gadd45ß-/- genotype increases cell injury and decreases cell proliferation during liver regeneration (compensatory growth and proliferation). Liver hyperplasia (de novo growth and proliferation) is an alternate form of growth, caused by drugs that activate the nuclear receptor, CAR. As in regeneration, the Gadd45ß-/- genotype considerably slows growth during hyperplasia. However, there is no injury and the slowing occurs because Gadd45ß normally binds to CAR and activates its transcriptional stimulation. Thus, Gadd45ß protects the liver through two entirely different processes: Binding MKK7 to block damaging signal transduction, or binding CAR to coactivate anabolic transcription.


Asunto(s)
Antígenos de Diferenciación , Hígado , Antígenos de Diferenciación/genética , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Hígado/metabolismo , Regeneración Hepática/genética , Transducción de Señal/fisiología
6.
Traffic ; 20(6): 448-459, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989771

RESUMEN

Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.


Asunto(s)
Endocitosis , Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Oxígeno/metabolismo , Estrés Mecánico , Transcriptoma , Animales , Técnicas de Cultivo de Célula/normas , Línea Celular , Glucólisis , Túbulos Renales Proximales/metabolismo , Metaboloma , Monodelphis
7.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884468

RESUMEN

Nkx2.9 is a member of the NK homeobox family and resembles Nkx2.2 both in homology and expression pattern. However, while Nkx2.2 is required for development of serotonergic neurons, the role of Nkx2.9 in the mid-hindbrain region is still ill-defined. We have previously shown that Nkx2.9 expression is downregulated upon loss of En1 during development. Here, we determined whether mdDA neurons require Nkx2.9 during their development. We show that Nkx2.9 is strongly expressed in the IsO and in the VZ and SVZ of the embryonic midbrain, and the majority of mdDA neurons expressed Nkx2.9 during their development. Although the expression of Dat and Cck are slightly affected during development, the overall development and cytoarchitecture of TH-expressing neurons is not affected in the adult Nkx2.9-depleted midbrain. Transcriptome analysis at E14.5 indicated that genes involved in mid- and hindbrain development are affected by Nkx2.9-ablation, such as Wnt8b and Tph2. Although the expression of Tph2 extends more rostral into the isthmic area in the Nkx2.9 mutants, the establishment of the IsO is not affected. Taken together, these data point to a minor role for Nkx2.9 in mid-hindbrain patterning by repressing a hindbrain-specific cell-fate in the IsO and by subtle regulation of mdDA neuronal subset specification.


Asunto(s)
Neuronas Dopaminérgicas/química , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio/genética , Rombencéfalo/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Tipificación del Cuerpo , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Mesencéfalo/química , Mesencéfalo/citología , Ratones , Rombencéfalo/química , Análisis de Secuencia de ARN
8.
Gastroenterology ; 156(1): 187-202.e14, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267710

RESUMEN

BACKGROUND & AIMS: Upon liver injury in which hepatocyte proliferation is compromised, liver progenitor cells (LPCs), derived from biliary epithelial cells (BECs), differentiate into hepatocytes. Little is known about the mechanisms of LPC differentiation. We used zebrafish and mouse models of liver injury to study the mechanisms. METHODS: We used transgenic zebrafish, Tg(fabp10a:CFP-NTR), to study the effects of compounds that alter epigenetic factors on BEC-mediated liver regeneration. We analyzed zebrafish with disruptions of the histone deacetylase 1 gene (hdac1) or exposed to MS-275 (an inhibitor of Hdac1, Hdac2, and Hdac3). We also analyzed zebrafish with mutations in sox9b, fbxw7, kdm1a, and notch3. Zebrafish larvae were collected and analyzed by whole-mount immunostaining and in situ hybridization; their liver tissues were collected for quantitative reverse transcription polymerase chain reaction. We studied mice in which hepatocyte-specific deletion of ß-catenin (Ctnnb1flox/flox mice injected with Adeno-associated virus serotype 8 [AAV8]-TBG-Cre) induces differentiation of LPCs into hepatocytes after a choline-deficient, ethionine-supplemented (CDE) diet. Liver tissues were collected and analyzed by immunohistochemistry and immunoblots. We performed immunohistochemical analyses of liver tissues from patients with compensated or decompensated cirrhosis or acute on chronic liver failure (n = 15). RESULTS: Loss of Hdac1 activity in zebrafish blocked differentiation of LPCs into hepatocytes by increasing levels of sox9b mRNA and reduced differentiation of LPCs into BECs by increasing levels of cdk8 mRNA, which encodes a negative regulator gene of Notch signaling. We identified Notch3 as the receptor that regulates differentiation of LPCs into BECs. Loss of activity of Kdm1a, a lysine demethylase that forms repressive complexes with Hdac1, produced the same defects in differentiation of LPCs into hepatocytes and BECs as observed in zebrafish with loss of Hdac1 activity. Administration of MS-275 to mice with hepatocyte-specific loss of ß-catenin impaired differentiation of LPCs into hepatocytes after the CDE diet. HDAC1 was expressed in reactive ducts and hepatocyte buds of liver tissues from patients with cirrhosis. CONCLUSIONS: Hdac1 regulates differentiation of LPCs into hepatocytes via Sox9b and differentiation of LPCs into BECs via Cdk8, Fbxw7, and Notch3 in zebrafish with severe hepatocyte loss. HDAC1 activity was also required for differentiation of LPCs into hepatocytes in mice with liver injury after the CDE diet. These pathways might be manipulated to induce LPC differentiation for treatment of patients with advanced liver diseases.


Asunto(s)
Conductos Biliares/enzimología , Diferenciación Celular , Proliferación Celular , Quinasa 8 Dependiente de Ciclina/metabolismo , Hepatocitos/enzimología , Histona Desacetilasa 1/metabolismo , Regeneración Hepática , Hígado/enzimología , Factor de Transcripción SOX9/metabolismo , Células Madre/enzimología , Proteínas de Pez Cebra/metabolismo , Insuficiencia Hepática Crónica Agudizada/enzimología , Insuficiencia Hepática Crónica Agudizada/patología , Animales , Conductos Biliares/patología , Deficiencia de Colina/genética , Deficiencia de Colina/metabolismo , Deficiencia de Colina/patología , Quinasa 8 Dependiente de Ciclina/genética , Modelos Animales de Enfermedad , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Hepatocitos/patología , Histona Desacetilasa 1/genética , Humanos , Hígado/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/patología , Ratones Noqueados , Mutación , Receptor Notch3/genética , Receptor Notch3/metabolismo , Factor de Transcripción SOX9/genética , Transducción de Señal , Células Madre/patología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Hepatology ; 70(5): 1546-1563, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31063640

RESUMEN

Epidermal growth factor receptor (EGFR) is a critical regulator of hepatocyte proliferation and liver regeneration. Our recent work indicated that EGFR can also regulate lipid metabolism during liver regeneration after partial hepatectomy. Based on these findings, we investigated the role of EGFR in a mouse model of nonalcoholic fatty liver disease (NAFLD) using a pharmacological inhibition strategy. C57BL6/J mice were fed a chow diet or a fast-food diet (FFD) with or without EGFR inhibitor (canertinib) for 2 months. EGFR inhibition completely prevented development of steatosis and liver injury in this model. In order to study if EGFR inhibition can reverse NAFLD progression, mice were fed the FFD for 5 months, with or without canertinib treatment for the last 5 weeks of the study. EGFR inhibition remarkably decreased steatosis, liver injury, and fibrosis and improved glucose tolerance. Microarray analysis revealed that ~40% of genes altered by the FFD were differentially expressed after EGFR inhibition and, thus, are potentially regulated by EGFR. Several genes and enzymes related to lipid metabolism (particularly fatty acid synthesis and lipolysis), which were disrupted by the FFD, were found to be modulated by EGFR. Several crucial transcription factors that play a central role in regulating these lipid metabolism genes during NAFLD, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBF1), carbohydrate-responsive element-binding protein, and hepatocyte nuclear factor 4 alpha, were also found to be modulated by EGFR. In fact, chromatin immunoprecipitation analysis revealed that PPARγ binding to several crucial lipid metabolism genes (fatty acid synthase, stearoyl-coenzyme A desaturase 1, and perilipin 2) was drastically reduced by EGFR inhibition. Further upstream, EGFR inhibition suppressed AKT signaling, which is known to control these transcription factors, including PPARγ and SREBF1, in NAFLD models. Lastly, the effect of EGFR in FFD-induced fatty-liver phenotype was not shared by receptor tyrosine kinase MET, investigated using MET knockout mice. Conclusion: Our study revealed a role of EGFR in NAFLD and the potential of EGFR inhibition as a treatment strategy for NAFLD.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Comida Rápida , Morfolinas/farmacología , Morfolinas/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
10.
J Hepatol ; 70(1): 108-117, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287339

RESUMEN

BACKGROUND & AIMS: Porphyrias result from anomalies of heme biosynthetic enzymes and can lead to cirrhosis and hepatocellular cancer. In mice, these diseases can be modeled by administration of a diet containing 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), which causes accumulation of porphyrin intermediates, resulting in hepatobiliary injury. Wnt/ß-catenin signaling has been shown to be a modulatable target in models of biliary injury; thus, we investigated its role in DDC-driven injury. METHODS: ß-Catenin (Ctnnb1) knockout (KO) mice, Wnt co-receptor KO mice, and littermate controls were fed a DDC diet for 2 weeks. ß-Catenin was exogenously inhibited in hepatocytes by administering ß-catenin dicer-substrate RNA (DsiRNA), conjugated to a lipid nanoparticle, to mice after DDC diet and then weekly for 4 weeks. In all experiments, serum and livers were collected; livers were analyzed by histology, western blotting, and real-time PCR. Porphyrin was measured by fluorescence, quantification of polarized light images, and liquid chromatography-mass spectrometry. RESULTS: DDC-fed mice lacking ß-catenin or Wnt signaling had decreased liver injury compared to controls. Exogenous mice that underwent ß-catenin suppression by DsiRNA during DDC feeding also showed less injury compared to control mice receiving lipid nanoparticles. Control livers contained extensive porphyrin deposits which were largely absent in mice lacking ß-catenin signaling. Notably, we identified a network of key heme biosynthesis enzymes that are suppressed in the absence of ß-catenin, preventing accumulation of toxic protoporphyrins. Additionally, mice lacking ß-catenin exhibited fewer protein aggregates, improved proteasomal activity, and reduced induction of autophagy, all contributing to protection from injury. CONCLUSIONS: ß-Catenin inhibition, through its pleiotropic effects on metabolism, cell stress, and autophagy, represents a novel therapeutic approach for patients with porphyria. LAY SUMMARY: Porphyrias are disorders resulting from abnormalities in the steps that lead to heme production, which cause build-up of toxic by-products called porphyrins. Liver is commonly either a source or a target of excess porphyrins, and complications can range from minor abnormalities to liver failure. In this report, we inhibited Wnt/ß-catenin signaling in an experimental model of porphyria, which resulted in decreased liver injury. Targeting ß-catenin affected multiple components of the heme biosynthesis pathway, thus preventing build-up of porphyrin intermediates. Our study suggests that drugs inhibiting ß-catenin activity could reduce the amount of porphyrin accumulation and help alleviate symptoms in patients with porphyria.


Asunto(s)
Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Porfirias/complicaciones , Porfirinas/metabolismo , beta Catenina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/patología , Inmunohistoquímica , Cirrosis Hepática/etiología , Cirrosis Hepática/patología , Masculino , Ratones , Ratones Noqueados
11.
Hepatology ; 67(3): 955-971, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28714273

RESUMEN

Cholestatic liver diseases result from impaired bile flow and are characterized by inflammation, atypical ductular proliferation, and fibrosis. The Wnt/ß-catenin pathway plays a role in bile duct development, yet its role in cholestatic injury remains indeterminate. Liver-specific ß-catenin knockout mice and wild-type littermates were subjected to cholestatic injury through bile duct ligation or short-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. Intriguingly, knockout mice exhibit a dramatic protection from liver injury, fibrosis, and atypical ductular proliferation, which coincides with significantly decreased total hepatic bile acids (BAs). This led to the discovery of a role for ß-catenin in regulating BA synthesis and transport through regulation of farnesoid X receptor (FXR) activation. We show that ß-catenin functions as both an inhibitor of nuclear translocation and a nuclear corepressor through formation of a physical complex with FXR. Loss of ß-catenin expedited FXR nuclear localization and FXR/retinoic X receptor alpha association, culminating in small heterodimer protein promoter occupancy and activation in response to BA or FXR agonist. Conversely, accumulation of ß-catenin sequesters FXR, thus inhibiting its activation. Finally, exogenous suppression of ß-catenin expression during cholestatic injury reduces ß-catenin/FXR complex activation of FXR to decrease total BA and alleviate hepatic injury. CONCLUSION: We have identified an FXR/ß-catenin interaction whose modulation through ß-catenin suppression promotes FXR activation and decreases hepatic BAs, which may provide unique therapeutic opportunities in cholestatic liver diseases. (Hepatology 2018;67:955-971).


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , beta Catenina/metabolismo , Animales , Hígado/patología , Ratones , Ratones Noqueados , Transducción de Señal
12.
Am J Physiol Renal Physiol ; 313(3): F585-F595, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615248

RESUMEN

The OK cell line derived from the kidney of a female opossum Didelphis virginiana has proven to be a useful model in which to investigate the unique regulation of ion transport and membrane trafficking mechanisms in the proximal tubule (PT). Sequence data and comparison of the transcriptome of this cell line to eutherian mammal PTs would further broaden the utility of this culture model. However, the genomic sequence for D. virginiana is not available and although a draft genome sequence for the opossum Monodelphis domestica (sequenced in 2012 by the Broad Institute) exists, transcripts sequenced from both species show significant divergence. The M. domestica sequence is not highly annotated, and the majority of transcripts are predicted rather than experimentally validated. Using deep RNA sequencing of the D. virginiana OK cell line, we characterized its transcriptome via de novo transcriptome assembly and alignment to the M. domestica genome. The quality of the de novo assembled transcriptome was assessed by the extent of homology to sequences in nucleotide and protein databases. Gene expression levels in the OK cell line, from both the de novo transcriptome and genes aligned to the M. domestica genome, were compared with publicly available rat kidney nephron segment expression data. Our studies demonstrate the expression in OK cells of numerous PT-specific ion transporters and other key proteins relevant for rodent and human PT function. Additionally, the sequence and expression data reported here provide an important resource for genetic manipulation and other studies on PT cell function using these cells.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Proximales/metabolismo , Zarigüeyas/genética , Transcriptoma , Animales , Línea Celular , Biología Computacional , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Transporte Iónico , Túbulos Renales Proximales/citología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fenotipo , Ratas , Especificidad de la Especie
13.
J Hepatol ; 64(6): 1348-57, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26855174

RESUMEN

BACKGROUND & AIMS: Current research focuses on developing alternative strategies to restore decreased liver mass prior to the onset of end-stage liver disease. Cell engraftment/repopulation requires regeneration in normal liver, but we have shown that severe liver injury stimulates repopulation without partial hepatectomy (PH). We have now investigated whether a less severe injury, secondary biliary fibrosis, would drive engraftment/repopulation of ectopically transplanted mature hepatocytes. METHODS: Ductular proliferation and progressive fibrosis in dipeptidyl-peptidase IV (DPPIV)(-) F344 rats was induced by common bile duct ligation (BDL). Purified DPPIV(+)/green fluorescent protein (GFP)(+) hepatocytes were infused without PH into the spleen of BDL rats and compared to rats without BDL. RESULTS: Within one week, transplanted hepatocytes were detected in hepatic portal areas and at the periphery of expanding portal regions. DPPIV(+)/GFP(+) repopulating cell clusters of different sizes were observed in BDL rats but not untreated normal recipients. Surprisingly, some engrafted hepatocytes formed CK-19/claudin-7 expressing epithelial cells resembling cholangiocytes within repopulating clusters. In addition, substantial numbers of hepatocytes engrafted at the intrasplenic injection site assembled into multicellular groups. These also showed biliary "transdifferentiation" in the majority of intrasplenic injection sites of rats that received BDL but not in untreated recipients. PCR array analysis showed upregulation of osteopontin (SPP1). Cell culture studies demonstrated increased Itgß4, HNF1ß, HNF6, Sox-9, and CK-19 mRNA expression in hepatocytes incubated with osteopontin, suggesting that this secreted protein promotes dedifferentiation of hepatocytes. CONCLUSIONS: Our studies show that biliary fibrosis stimulates liver repopulation by ectopically transplanted hepatocytes and also stimulates hepatocyte transition towards a biliary epithelial phenotype.


Asunto(s)
Hepatocitos/trasplante , Cirrosis Hepática Biliar/patología , Hígado/patología , Animales , Desdiferenciación Celular , Células Cultivadas , Dipeptidil Peptidasa 4/análisis , Hepatocitos/patología , Fenotipo , Ratas , Ratas Endogámicas F344
14.
Am J Pathol ; 184(11): 2868-84, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25128906

RESUMEN

We evaluated the importance of tumor cell selection for generating gene signatures in non-small cell lung cancer. Tumor and nontumor tissue from macroscopically dissected (Macro) surgical specimens (31 pairs from 32 subjects) was homogenized, extracted, amplified, and hybridized to microarrays. Adjacent scout sections were histologically mapped; sets of approximately 1000 tumor cells and nontumor cells (alveolar or bronchial) were procured by laser capture microdissection (LCM). Within histological strata, LCM and Macro specimens exhibited approximately 67% to 80% nonoverlap in differentially expressed (DE) genes. In a representative subset, LCM uniquely identified 300 DE genes in tumor versus nontumor specimens, largely attributable to cell selection; 382 DE genes were common to Macro, Macro with preamplification, and LCM platforms. RT-qPCR validation in a 33-gene subset was confirmatory (ρ = 0.789 to 0.964, P = 0.0013 to 0.0028). Pathway analysis of LCM data suggested alterations in known cancer pathways (cell growth, death, movement, cycle, and signaling components), among others (eg, immune, inflammatory). A unique nine-gene LCM signature had higher tumor-nontumor discriminatory accuracy (100%) than the corresponding Macro signature (87%). Comparison with Cancer Genome Atlas data sets (based on homogenized Macro tissue) revealed both substantial overlap and important differences from LCM specimen results. Thus, cell selection via LCM enhances expression profiling precision, and confirms both known and under-appreciated lung cancer genes and pathways.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Transcriptoma , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Captura por Microdisección con Láser , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
15.
Hepatology ; 59(1): 284-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23840008

RESUMEN

UNLABELLED: Considerable progress has been made in developing antifibrotic agents and other strategies to treat liver fibrosis; however, significant long-term restoration of functional liver mass has not yet been achieved. Therefore, we investigated whether transplanted hepatic stem/progenitor cells can effectively repopulate the liver with advanced fibrosis/cirrhosis. Stem/progenitor cells derived from fetal livers or mature hepatocytes from DPPIV(+) F344 rats were transplanted into DPPIV(-) rats with thioacetamide (TAA)-induced fibrosis/cirrhosis; rats were sacrificed 1, 2, or 4 months later. Liver tissues were analyzed by histochemistry, hydroxyproline determination, reverse-transcription polymerase chain reaction (RT-PCR), and immunohistochemistry. After chronic TAA administration, DPPIV(-) F344 rats exhibited progressive fibrosis, cirrhosis, and severe hepatocyte damage. Besides stellate cell activation, increased numbers of stem/progenitor cells (Dlk-1(+), AFP(+), CD133(+), Sox-9(+), FoxJ1(+)) were observed. In conjunction with partial hepatectomy (PH), transplanted stem/progenitor cells engrafted, proliferated competitively compared to host hepatocytes, differentiated into hepatocytic and biliary epithelial cells, and generated new liver mass with extensive long-term liver repopulation (40.8 ± 10.3%). Remarkably, more than 20% liver repopulation was achieved in the absence of PH, associated with reduced fibrogenic activity (e.g., expression of alpha smooth muscle actin, platelet-derived growth factor receptor ß, desmin, vimentin, tissue inhibitor of metalloproteinase-1) and fibrosis (reduced collagen). Furthermore, hepatocytes can also replace liver mass with advanced fibrosis/cirrhosis, but to a lesser extent than fetal liver stem/progenitor cells. CONCLUSION: This study is a proof of principle demonstration that transplanted epithelial stem/progenitor cells can restore injured parenchyma in a liver environment with advanced fibrosis/cirrhosis and exhibit antifibrotic effects.


Asunto(s)
Células Madre Fetales/fisiología , Cirrosis Hepática/terapia , Regeneración Hepática , Trasplante de Células Madre , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Hepatocitos/citología , Hepatocitos/fisiología , Hígado/embriología , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Embarazo , Ratas , Ratas Endogámicas F344 , Tioacetamida
16.
Cell Mol Gastroenterol Hepatol ; 17(3): 453-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37993018

RESUMEN

BACKGROUND & AIMS: HNF4α, a master regulator of liver development and the mature hepatocyte phenotype, is down-regulated in chronic and inflammatory liver disease. We used contemporary transcriptomics and epigenomics to study the cause and effects of this down-regulation and characterized a multicellular etiology. METHODS: Progressive changes in the rat carbon tetrachloride model were studied by deep RNA sequencing and genome-wide chromatin immunoprecipitation sequencing analysis of transcription factor (TF) binding and chromatin modification. Studies compared decompensated cirrhosis with liver failure after 26 weeks of treatment with earlier compensated cirrhosis and with additional rat models of chronic fibrosis. Finally, to resolve cell-specific responses and intercellular signaling, we compared transcriptomes of liver, nonparenchymal, and inflammatory cells. RESULTS: HNF4α was significantly lower in 26-week cirrhosis, part of a general reduction of TFs that regulate metabolism. Nevertheless, increased binding of HNF4α contributed to strong activation of major phenotypic genes, whereas reduced binding to other genes had a moderate phenotypic effect. Decreased Hnf4a expression was the combined effect of STAT3 and nuclear factor kappa B (NFκB) activation, which similarly reduced expression of other metabolic TFs. STAT/NFκB also induced de novo expression of Osmr by hepatocytes to complement induced expression of Osm by nonparenchymal cells. CONCLUSIONS: Liver decompensation by inflammatory STAT3 and NFκB signaling was not a direct consequence of progressive cirrhosis. Despite significant reduction of Hnf4a expression, residual levels of this abundant TF still stimulated strong new gene expression. Reduction of HNF4α was part of a broad hepatocyte transcriptional response to inflammation.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Fallo Hepático , Animales , Ratas , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/patología , Fallo Hepático/metabolismo
17.
Cells ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607090

RESUMEN

BACKGROUND/AIM: Activin A is involved in the pathogenesis of human liver diseases, but its therapeutic targeting is not fully explored. Here, we tested the effect of novel, highly specific small-molecule-based activin A antagonists (NUCC-474/555) in improving liver regeneration following partial hepatectomy and halting fibrosis progression in models of chronic liver diseases (CLDs). METHODS: Cell toxicity of antagonists was determined in rat hepatocytes and Huh-7 cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Hepatocytes and hepatic stellate cells (HSCs) were treated with activin A and NUCC-555 and analyzed by reverse transcription-polymerase chain reaction and immunohistochemistry. Partial hepatectomized Fisher (F)344 rats were treated with NUCC-555, and bromodeoxyuridine (BrdU) incorporation was determined at 18/24/36/120/240 h. NUCC-555 was administered into thioacetamide- or carbon tetrachloride-treated F344 rats or C57BL/6 mice, and the fibrosis progression was studied. RESULTS: NUCC-474 showed higher cytotoxicity in cultured hepatic cells; therefore, NUCC-555 was used in subsequent studies. Activin A-stimulated overexpression of cell cycle-/senescence-related genes (e.g., p15INK4b, DEC1, Glb1) was near-completely reversed by NUCC-555 in hepatocytes. Activin A-mediated HSC activation was blocked by NUCC-555. In partial hepatectomized rats, antagonizing activin A signaling resulted in a 1.9-fold and 2.3-fold increase in BrdU+ cells at 18 and 24 h, respectively. Administration of NUCC-555 in rats and mice with progressing fibrosis significantly reduced collagen accumulation (7.9-fold), HSC activation indicated by reduced alpha smooth muscle actin+ and vimentin+ cells, and serum aminotransferase activity. CONCLUSIONS: Our studies demonstrate that activin A antagonist NUCC-555 promotes liver regeneration and halts fibrosis progression in CLD models, suggesting that blocking activin A signaling may represent a new approach to treating people with CLD.


Asunto(s)
Activinas , Hepatopatías , Transducción de Señal , Animales , Humanos , Ratones , Ratas , Bromodesoxiuridina , Fibrosis , Hepatopatías/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratas Endogámicas F344 , Transducción de Señal/efectos de los fármacos
18.
Cell Mol Gastroenterol Hepatol ; 18(4): 101380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39038606

RESUMEN

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model. METHODS: EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months. RESULTS: Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-ß/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. CONCLUSIONS: Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.


Asunto(s)
Receptores ErbB , Hepatocitos , Cirrosis Hepática , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Receptores ErbB/genética , Hígado Graso/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Eliminación de Gen , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/etiología , Ratones Noqueados , Transducción de Señal
19.
Adv Exp Med Biol ; 793: 69-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24104474

RESUMEN

Injury and growth stimulation both remarkably increase the hepatic expression of Gadd45ß. In liver cancer, promoter methylation frequently silences Gadd45ß, demonstrating due to a suppressive function that is often proapoptotic. This contrasts with normal hepatocytes, where Gadd45ß facilitates cell survival, growth, and proliferation. Gadd45ß binds MKK7-downstream of TNFα and its receptors-to prevent this kinase from activating JNK2. Hence, the Gadd45b-/- genotype increases cell injury and decreases cell proliferation during liver regeneration (i.e., compensatory growth and proliferation). Liver hyperplasia (i.e., de novo growth and proliferation) is an alternate form of growth, caused by drugs that activate the nuclear receptor, CAR. As in regeneration, the Gadd45b-/- genotype considerably slows growth during hyperplasia. However, there is no injury and the slowing occurs because Gadd45ß normally binds to CAR and activates its transcriptional stimulation. Thus, Gadd45ß protects the liver through two entirely different processes: binding MKK7 to block damaging signal transduction or binding CAR to coactivate anabolic transcription.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , MAP Quinasa Quinasa 7/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Antígenos de Diferenciación/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Puntos de Control del Ciclo Celular , Proliferación Celular , Receptor de Androstano Constitutivo , Regulación de la Expresión Génica , Hepatocitos/citología , Humanos , Hígado/citología , Regeneración Hepática/genética , MAP Quinasa Quinasa 7/genética , Regiones Promotoras Genéticas , Unión Proteica , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Genética
20.
Cell Mol Gastroenterol Hepatol ; 15(4): 949-970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36535507

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH), a leading cause of cirrhosis, strongly associates with the metabolic syndrome, an insulin-resistant proinflammatory state that disrupts energy balance and promotes progressive liver degeneration. We aimed to define the role of Smoothened (Smo), an obligatory component of the Hedgehog signaling pathway, in controlling hepatocyte metabolic homeostasis and, thereby, susceptibility to NASH. METHODS: We conditionally deleted Smo in hepatocytes of healthy chow-fed mice and performed metabolic phenotyping, coupled with single-cell RNA sequencing (RNA-seq), to characterize the role of hepatocyte Smo in regulating basal hepatic and systemic metabolic homeostasis. Liver RNA-seq datasets from 2 large human cohorts were also analyzed to define the relationship between Smo and NASH susceptibility in people. RESULTS: Hepatocyte Smo deletion inhibited the Hedgehog pathway and promoted fatty liver, hyperinsulinemia, and insulin resistance. We identified a plausible mechanism whereby inactivation of Smo stimulated the mTORC1-SREBP1c signaling axis, which promoted lipogenesis while inhibiting the hepatic insulin cascade. Transcriptomics of bulk and single Smo-deficient hepatocytes supported suppression of insulin signaling and also revealed molecular abnormalities associated with oxidative stress and mitochondrial dysfunction. Analysis of human bulk RNA-seq data revealed that Smo expression was (1) highest in healthy livers, (2) lower in livers with NASH than in those with simple steatosis, (3) negatively correlated with markers of insulin resistance and liver injury, and (4) declined progressively as fibrosis severity worsened. CONCLUSIONS: The Hedgehog pathway controls insulin sensitivity and energy homeostasis in adult livers. Loss of hepatocyte Hedgehog activity induces hepatic and systemic metabolic stress and enhances susceptibility to NASH by promoting hepatic lipoxicity and insulin resistance.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Adulto , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Resistencia a la Insulina/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hepatocitos/metabolismo , Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA