Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
FASEB J ; : fj201800634R, 2018 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932868

RESUMEN

Hunger-sensing agouti-related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild-type controls, as KO mice act to restore pre-CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.-Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction.

2.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709209

RESUMEN

New studies (Tang et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231395) describe a liver stress pathway that is activated by certain chemotherapeutic drugs, which in turn induces a peptide hormone which partially mediates the lower food intake and body weight loss during chemotherapy treatment.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/uso terapéutico , Hígado/metabolismo , Animales , Estrés Fisiológico , Neoplasias/tratamiento farmacológico
3.
Mol Metab ; 77: 101803, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37690518

RESUMEN

OBJECTIVE: An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS: To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS: A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS: Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.

4.
Mol Metab ; 78: 101826, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898450

RESUMEN

OBJECTIVE: The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS: We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS: The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS: Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.


Asunto(s)
Ingestión de Alimentos , Ghrelina , Ratones , Animales , Ghrelina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo
5.
Biol Psychiatry ; 93(4): 309-321, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400605

RESUMEN

BACKGROUND: A greater understanding of how the brain controls appetite is fundamental to developing new approaches for treating diseases characterized by dysfunctional feeding behavior, such as obesity and anorexia nervosa. METHODS: By modeling neural network dynamics related to homeostatic state and body mass index, we identified a novel pathway projecting from the medial prefrontal cortex (mPFC) to the lateral hypothalamus (LH) in humans (n = 53). We then assessed the physiological role and dissected the function of this mPFC-LH circuit in mice. RESULTS: In vivo recordings of population calcium activity revealed that this glutamatergic mPFC-LH pathway is activated in response to acute stressors and inhibited during food consumption, suggesting a role in stress-related control over food intake. Consistent with this role, inhibition of this circuit increased feeding and sucrose seeking during mild stressors, but not under nonstressful conditions. Finally, chemogenetic or optogenetic activation of the mPFC-LH pathway is sufficient to suppress food intake and sucrose seeking in mice. CONCLUSIONS: These studies identify a glutamatergic mPFC-LH circuit as a novel stress-sensitive anorexigenic neural pathway involved in the cortical control of food intake.


Asunto(s)
Conducta Alimentaria , Área Hipotalámica Lateral , Corteza Prefrontal , Estrés Psicológico , Animales , Humanos , Ratones , Conducta Alimentaria/fisiología , Área Hipotalámica Lateral/fisiología , Corteza Prefrontal/fisiología , Estrés Psicológico/fisiopatología
6.
FASEB J ; 25(8): 2814-22, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21543764

RESUMEN

Ghrelin is a hormone produced predominantly by the stomach that targets a number of specific areas in the central nervous system to promote a positive energy balance by increasing food intake and energy storage. In that respect, similarities exist with the effects of consuming a high-fat diet (HFD), which also increases caloric intake and the amount of stored calories. We determined whether the effects of ghrelin on feeding and adiposity are influenced by the exposure to an HFD. Chronic intracerebroventricular ghrelin (2.5 nmol/d) increased feeding in lean rats fed a low-fat control diet (CD) [192 ± 5 g (ghrelin+CD) vs. 152 ± 5 g (control i.c.v. saline+CD), P<0.001], but the combination of ghrelin plus HFD did not result in significantly greater hyperphagia [150 ± 7 g (ghrelin+HFD) vs. 136 ± 4 g (saline+HFD)]. Despite failing to increase food intake in rats fed the HFD, ghrelin nonetheless increased adiposity [fat mass increase of 14 ± 2 g (ghrelin+HFD) vs. 1 ± 1 g (saline+HFD), P<0.001] up-regulating the gene expression of lipogenic enzymes in white adipose tissue. Our findings demonstrate that factors associated with high-fat feeding functionally interact with pathways regulating the effect of ghrelin on food intake. We conclude that ghrelin's central effects on nutrient intake and nutrient partitioning can be separated and suggest an opportunity to identify respective independent neuronal pathways.


Asunto(s)
Adiposidad/efectos de los fármacos , Ghrelina/farmacología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/fisiología , Adiposidad/fisiología , Animales , Grasas de la Dieta/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Ghrelina/administración & dosificación , Ghrelina/fisiología , Hiperfagia/etiología , Hiperfagia/fisiopatología , Hipotálamo Medio/efectos de los fármacos , Hipotálamo Medio/fisiología , Infusiones Intraventriculares , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Lipogénesis/fisiología , Masculino , Melanocortinas/antagonistas & inhibidores , Melanocortinas/fisiología , Neuropéptidos/fisiología , Ratas , Ratas Long-Evans , Ratas Wistar , Receptores de Neuropéptido/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba
7.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788848

RESUMEN

The ventromedial hypothalamic (VMH) nucleus is a well-established hub for energy and glucose homeostasis. In particular, VMH neurons are thought to be important for initiating the counterregulatory response to hypoglycemia, and ex vivo electrophysiology and immunohistochemistry data indicate a clear role for VMH neurons in sensing glucose concentration. However, the temporal response of VMH neurons to physiologically relevant changes in glucose availability in vivo has been hampered by a lack of available tools for measuring neuronal activity over time. Since the majority of neurons within the VMH are glutamatergic and can be targeted using the vesicular glutamate transporter Vglut2, we expressed cre-dependent GCaMP7s in Vglut2 cre mice and examined the response profile of VMH to intraperitoneal injections of glucose, insulin, and 2-deoxyglucose (2DG). We show that reduced available glucose via insulin-induced hypoglycemia and 2DG-induced glucoprivation, but not hyperglycemia induced by glucose injection, inhibits VMH Vglut2 neuronal population activity in vivo. Surprisingly, this inhibition was maintained for at least 45 minutes despite prolonged hypoglycemia and initiation of a counterregulatory response. Thus, although VMH stimulation, via pharmacological, electrical, or optogenetic approaches, is sufficient to drive a counterregulatory response, our data suggest VMH Vglut2 neurons are not the main drivers required to do so, since VMH Vglut2 neuronal population activity remains suppressed during hypoglycemia and glucoprivation.


Asunto(s)
Hipoglucemia , Insulina , Animales , Glucemia , Desoxiglucosa/farmacología , Glucosa/farmacología , Insulina/farmacología , Masculino , Ratones , Neuronas , Fotometría , Ratas , Ratas Sprague-Dawley , Núcleo Hipotalámico Ventromedial
8.
Elife ; 112022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018884

RESUMEN

Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.


Asunto(s)
Proteína Relacionada con Agouti/genética , Cuerpo Estriado/fisiología , Dopamina/fisiología , Homeostasis , Neuronas/fisiología , Transducción de Señal , Proteína Relacionada con Agouti/metabolismo , Animales , Ratones , Ratones Noqueados
9.
J Neurosci ; 30(17): 6036-47, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20427662

RESUMEN

Sepsis describes a complex clinical syndrome that results from an infection, setting off a cascade of systemic inflammatory responses that can lead to multiple organ failure and death. Leptin is a 16 kDa adipokine that, among its multiple known effects, is involved in regulating immune function. Here we demonstrate that leptin deficiency in ob/ob mice leads to higher mortality and more severe organ damage in a standard model of sepsis in mice [cecal ligation and puncture (CLP)]. Moreover, systemic leptin replacement improved the immune response to CLP. Based on the molecular mechanisms of leptin regulation of energy metabolism and reproductive function, we hypothesized that leptin acts in the CNS to efficiently coordinate peripheral immune defense in sepsis. We now report that leptin signaling in the brain increases survival during sepsis in leptin-deficient as well as in wild-type mice and that endogenous CNS leptin action is required for an adequate systemic immune response. These findings reveal the existence of a relevant neuroendocrine control of systemic immune defense and suggest a possible therapeutic potential for leptin analogs in infectious disease.


Asunto(s)
Encéfalo/inmunología , Encéfalo/metabolismo , Leptina/metabolismo , Sepsis/inmunología , Sepsis/metabolismo , Animales , Bacteriemia/inmunología , Bacteriemia/metabolismo , Bacteriemia/mortalidad , Modelos Animales de Enfermedad , Leptina/deficiencia , Leptina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroinmunomodulación/fisiología , Neutrófilos/metabolismo , Distribución Aleatoria , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Sepsis/mortalidad
10.
Nat Chem Biol ; 5(10): 749-57, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19597507

RESUMEN

We report the efficacy of a new peptide with agonism at the glucagon and GLP-1 receptors that has potent, sustained satiation-inducing and lipolytic effects. Selective chemical modification to glucagon resulted in a loss of specificity, with minimal change to inherent activity. The structural basis for the co-agonism appears to be a combination of local positional interactions and a change in secondary structure. Two co-agonist peptides differing from each other only in their level of glucagon receptor agonism were studied in rodent obesity models. Administration of PEGylated peptides once per week normalized adiposity and glucose tolerance in diet-induced obese mice. Reduction of body weight was achieved by a loss of body fat resulting from decreased food intake and increased energy expenditure. These preclinical studies indicate that when full GLP-1 agonism is augmented with an appropriate degree of glucagon receptor activation, body fat reduction can be substantially enhanced without any overt adverse effects.


Asunto(s)
Péptido 1 Similar al Glucagón/agonistas , Obesidad/tratamiento farmacológico , Péptidos Cíclicos/uso terapéutico , Polietilenglicoles/química , Receptores de Glucagón/agonistas , Tejido Adiposo/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Peso Corporal/efectos de los fármacos , AMP Cíclico/biosíntesis , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Ratones , Ratones Obesos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Conformación Proteica
11.
Cell Rep Med ; 1(7): 100120, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33103129

RESUMEN

Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.


Asunto(s)
Aciltransferasas/genética , Ghrelina/análogos & derivados , Ghrelina/genética , Hipocampo/metabolismo , Proteínas de la Membrana/genética , Enfermedad de Parkinson/genética , Parálisis Supranuclear Progresiva/genética , Aciltransferasas/deficiencia , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/fisiología , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Ghrelina/metabolismo , Hipocampo/patología , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Cultivo Primario de Células , Ratas , Transducción de Señal , Memoria Espacial/fisiología , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/patología
12.
Pharmacol Res ; 60(2): 93-8, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19559361

RESUMEN

The endocannabinoid system (ECS) has emerged as one of the most relevant regulators of energy balance. The ECS acts through two cannabinoid receptors: types 1 and 2 (CB1 and CB2). CB1 receptors are widely expressed in the brain, but are also expressed in adipose tissue, skeletal muscle, the liver, the gut, and the pancreas. Blockade of CB1 receptors causes a reduction in food intake and a sustained weight loss. This system contributes also to the control of lipid and glucose metabolism, and it is well established that blockade of CB1 receptors enhances insulin sensitivity in both humans and rodents. In obese states, endocannabinoid levels are increased and might exert unfavorable effects on insulin-sensitive tissues. This review summarizes the effects of the endocannabinoid system on glucose metabolism in humans and rodents.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Metabolismo Energético/fisiología , Glucosa/metabolismo , Animales , Humanos
13.
J Neuroendocrinol ; 31(7): e12696, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30742723

RESUMEN

Information about metabolic status arrives in the brain in the form of a complex milieu of circulating signalling factors, including glucose and fatty acids, ghrelin, leptin and insulin. The specific interactions between humoural factors, brain sites of action and how they influence behaviour are largely unknown. We have previously observed interactions between glucose availability and the actions of ghrelin mediated via the agouti-related peptide neurones of the hypothalamus. In the present study, we examine whether these effects generalise to another ghrelin-sensitive brain nucleus, the ventral tegmental area (VTA). We altered glucose availability by injecting mice with glucose or 2-deoxyglucose i.p. to induce hyperglycaemia and glucopenia, respectively. Thirty minutes later, we injected ghrelin in the VTA. Glucose administration suppressed intra-VTA ghrelin-induced feeding. Leptin, a longer-term signal of positive energy balance, did not affect intra-VTA ghrelin-induced feeding. 2-Deoxyglucose and ghrelin both increased food intake in their own right and, together, they additively increased feeding. These results add support to the idea that calculation of metabolic need depends on multiple signals across multiple brain regions and identifies that VTA circuits are sensitive to the integration of signals reflecting internal homeostatic state and influencing food intake.


Asunto(s)
Ingestión de Alimentos/fisiología , Ghrelina/fisiología , Glucosa/administración & dosificación , Área Tegmental Ventral/fisiología , Animales , Glucemia/efectos de los fármacos , Desoxiglucosa/administración & dosificación , Ingestión de Alimentos/efectos de los fármacos , Ghrelina/administración & dosificación , Ratones Endogámicos C57BL , Área Tegmental Ventral/efectos de los fármacos
14.
Endocrinology ; 159(11): 3605-3614, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30204871

RESUMEN

Metabolic feedback from the periphery to the brain results from a dynamic physiologic fluctuation of nutrients and hormones, including glucose and fatty acids, ghrelin, leptin, and insulin. The specific interactions between humoral factors and how they influence feeding is largely unknown. We hypothesized that acute glucose availability may alter how the brain responds to ghrelin, a hormonal signal of energy availability. Acute glucose administration suppressed a range of ghrelin-induced behaviors as well as gene expression changes in hypothalamic neuropeptide Y (NPY) and agouti-related peptide (AgRP) neurons after ghrelin administration. Knockdown of the energy-sensing molecule AMP-activated protein kinase (AMPK) in AgRP neurons resulted in loss of the glucose effect, and mice responded as though pretreated with saline. Conversely, 2-deoxyglucose (2-DG), which decreases glucose availability, potentiated ghrelin-induced feeding and increased hypothalamic NPY mRNA levels. AMPK knockdown did not alter the additive effect of 2-DG and ghrelin on feeding. Our findings support the idea that computation of energy status is dynamic, is informed by multiple signals, and responds to acute fluctuations in metabolic state. These observations are broadly relevant to the investigation of neuroendocrine control of feeding and highlight the underappreciated complexity of control within these systems.


Asunto(s)
Proteína Relacionada con Agouti/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Glucosa/farmacología , Neuronas/efectos de los fármacos , Neuropéptido Y/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Relacionada con Agouti/genética , Animales , Antimetabolitos/farmacología , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Desoxiglucosa/farmacología , Técnicas de Silenciamiento del Gen , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Neuropéptido Y/genética , ARN Mensajero/metabolismo
15.
Endocrinology ; 159(6): 2473-2483, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29697769

RESUMEN

Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.


Asunto(s)
Adaptación Fisiológica/genética , Proteína Relacionada con Agouti/metabolismo , Restricción Calórica , Carnitina O-Acetiltransferasa/fisiología , Conducta Alimentaria/fisiología , Homeostasis/genética , Neuronas/metabolismo , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Condicionamiento Físico Animal/fisiología
16.
Cell Rep ; 22(7): 1745-1759, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444428

RESUMEN

AgRP neurons control peripheral substrate utilization and nutrient partitioning during conditions of energy deficit and nutrient replenishment, although the molecular mechanism is unknown. We examined whether carnitine acetyltransferase (Crat) in AgRP neurons affects peripheral nutrient partitioning. Crat deletion in AgRP neurons reduced food intake and feeding behavior and increased glycerol supply to the liver during fasting, as a gluconeogenic substrate, which was mediated by changes to sympathetic output and peripheral fatty acid metabolism in the liver. Crat deletion in AgRP neurons increased peripheral fatty acid substrate utilization and attenuated the switch to glucose utilization after refeeding, indicating altered nutrient partitioning. Proteomic analysis in AgRP neurons shows that Crat regulates protein acetylation and metabolic processing. Collectively, our studies highlight that AgRP neurons require Crat to provide the metabolic flexibility to optimize nutrient partitioning and regulate peripheral substrate utilization, particularly during fasting and refeeding.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Carnitina O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Animales , Colecistoquinina/administración & dosificación , Ingestión de Alimentos , Ayuno , Conducta Alimentaria , Eliminación de Gen , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Inyecciones Intraperitoneales , Inyecciones Intraventriculares , Insulina/administración & dosificación , Integrasas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Noqueados , Proteómica , Reproducibilidad de los Resultados
17.
Front Neurosci ; 11: 24, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194094

RESUMEN

Most studies that measure food intake in mice do so in the home cage environment. This necessarily means that mice do not engage in food seeking before consumption, a behavior that is ubiquitous in free-living animals. We modified and validated several commonly used anxiety tests to include a palatable food reward within the anxiogenic zone. This allowed us to assess risk-taking behavior in food seeking in mice in response to different metabolic stimuli. We modified the open field test and the light/dark box by placing palatable peanut butter chips within a designated food zone inside the anxiogenic zone of each apparatus. We then assessed parameters of the interaction with the food reward. Fasted mice or mice treated with ghrelin showed increased consumption and increased time spent in the food zone immediately around the food reward compared to ad libitum fed mice or mice treated with saline. However, fasted mice treated with IP glucose before exposure to the behavioral arena showed reduced time in the food zone compared to fasted controls, indicating that acute metabolic signals can modify the assessment of safety in food seeking in a risky environment. The tests described in this study will be useful in assessing risk processing and incentive salience of food reward, which are intrinsic components of food acquisition outside of the laboratory environment, in a range of genetic and pharmacological models.

18.
Endocrinology ; 157(10): 3946-3957, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27490185

RESUMEN

Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.


Asunto(s)
Aciltransferasas/metabolismo , Ansiedad/fisiopatología , Ghrelina/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Acilación , Aciltransferasas/genética , Animales , Ansiedad/psicología , Femenino , Masculino , Proteínas de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados
19.
Mol Cell Endocrinol ; 417: 10-9, 2015 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26360587

RESUMEN

The CB1 receptor antagonist, rimonabant, causes weight loss but also produces undesirable psychiatric side effects. We investigated using a combination of rimonabant with the opioid receptor antagonists naloxone and norBNI to treat the metabolic sequelae of long-term high fat diet feeding in mice. This combination has previously been shown to have positive effects on both weight loss and mood related behaviour. Diet-induced obese mice were treated chronically with either low dose rimonabant (1 mg/kg) or the combination of rimonabant, naloxone and norBNI (rim nal BNI). After 6 days of treatment, glucose and insulin tolerance tests were performed and body composition analysed using DEXA. Changes in BAT thermogenesis were assessed using implantable radio telemetry probes. Behavioural responses to acute rimonabant or rim nal BNI were examined in the forced swim test and elevated plus maze. Separately, we assessed shifts in Fos immunoreactivity in response to rimonabant or rim nal BNI. Rim nal BNI was significantly better than rimonabant treatment alone at reducing body weight and food intake. In addition, it improved fasting blood glucose and fat mass. Acute low dose rimonabant did not alter behaviour in either the forced swim test or elevated plus maze. Combination rim nal BNI reversed the behavioural effects of high dose (10 mg/kg) rimonabant in obese mice. Rim nal BNI altered Rimonabant-induced Fos in a number of nuclei, with particular shifts in expression in the central and basolateral amygdala, and insular cortex. This study demonstrates that the combination of rimonabant, naloxone and norBNI is effective at producing weight loss over a sustained period of time without altering performance in standardised mouse behaviour tests. Fos expression patterns offer insight into the neuroanatomical substrates subserving these physiological and behavioural changes. These results indicate that CB1-targeted drugs for weight loss may still be feasible.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/administración & dosificación , Glucosa/metabolismo , Insulina/metabolismo , Antagonistas de Narcóticos/administración & dosificación , Obesidad/tratamiento farmacológico , Animales , Composición Corporal/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Quimioterapia Combinada , Masculino , Ratones , Ratones Obesos , Naloxona/administración & dosificación , Naloxona/uso terapéutico , Antagonistas de Narcóticos/farmacología , Obesidad/inducido químicamente , Piperidinas/administración & dosificación , Piperidinas/uso terapéutico , Pirazoles/administración & dosificación , Pirazoles/uso terapéutico , Rimonabant , Termogénesis/efectos de los fármacos , Resultado del Tratamiento
20.
Endocrinology ; 156(3): 858-68, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25535832

RESUMEN

Recent evidence suggests that peripheral ghrelin regulates glucose metabolism. Here, we designed experiments to examine how central acyl ghrelin infusion affects peripheral glucose metabolism under pair-fed or ad libitum feeding conditions. Mice received intracerebroventricular (icv) infusion of artificial cerebrospinal fluid (aCSF), ghrelin, and allowed to eat ad libitum (icv ghrelin ad lib) or ghrelin and pair-fed to the aCSF group (icv ghrelin pf). Minipumps delivered acyl ghrelin at a dose of 0.25 µg/h at 0.5 µL/h for 7 days. There was no difference in daily blood glucose, insulin, glucagon, triglycerides, or nonesterified fatty acids. Body weight gain and food intake was significantly higher in icv ghrelin ad lib mice. However, both icv ghrelin ad lib and icv ghrelin pf groups exhibited heavier white adipose mass. Icv ghrelin pf mice exhibited better glucose tolerance than aCSF or icv ghrelin ad lib mice during a glucose tolerance test, although both icv ghrelin ad lib and icv ghrelin pf increased insulin release during the glucose tolerance test. Central acyl ghrelin infusion and pair feeding also increased breakdown of liver glycogen and triglyceride, and regulated genes involved in hepatic lipid and glucose metabolism. Icv ghrelin pf mice had an increase in plasma blood glucose during a pyruvate tolerance test relative to icv ghrelin ad lib or aCSF mice. Our results suggest that under conditions of negative energy (icv ghrelin pf), central acyl ghrelin engages a neural circuit that influences hepatic glucose function. Metabolic status affects the ability of central acyl ghrelin to regulate peripheral glucose homeostasis.


Asunto(s)
Ghrelina/farmacología , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Acilación , Animales , Glucemia/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ghrelina/sangre , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Insulina/metabolismo , Leptina/sangre , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA