Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Aging Clin Exp Res ; 29(4): 579-590, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27592133

RESUMEN

Many factors contribute to the decline of skeletal muscle that occurs as we age. This is a reality that we may combat, but not prevent because it is written into our genome. The series of records from World Master Athletes reveals that skeletal muscle power begins to decline at the age of 30 years and continues, almost linearly, to zero at the age of 110 years. Here we discuss evidence that denervation contributes to the atrophy and slowness of aged muscle. We compared muscle from lifelong active seniors to that of sedentary elderly people and found that the sportsmen have more muscle bulk and slow fiber type groupings, providing evidence that physical activity maintains slow motoneurons which reinnervate muscle fibers. Further, accelerated muscle atrophy/degeneration occurs with irreversible Conus and Cauda Equina syndrome, a spinal cord injury in which the human leg muscles may be permanently disconnected from the nervous system with complete loss of muscle fibers within 5-8 years. We used histological morphometry and Muscle Color Computed Tomography to evaluate muscle from these peculiar persons and reveal that contraction produced by home-based Functional Electrical Stimulation (h-bFES) recovers muscle size and function which is reversed if h-bFES is discontinued. FES also reverses muscle atrophy in sedentary seniors and modulates mitochondria in horse muscles. All together these observations indicate that FES modifies muscle fibers by increasing contractions per day. Thus, FES should be considered in critical care units, rehabilitation centers and nursing facilities when patients are unable or reluctant to exercise.


Asunto(s)
Envejecimiento/fisiología , Terapia por Estimulación Eléctrica , Ejercicio Físico/fisiología , Debilidad Muscular/rehabilitación , Traumatismos de la Médula Espinal/rehabilitación , Factores de Edad , Anciano , Animales , Cauda Equina/lesiones , Estimulación Eléctrica , Caballos , Humanos , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Atrofia Muscular/rehabilitación
2.
Arch Phys Med Rehabil ; 97(6): 857-65, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26763947

RESUMEN

OBJECTIVES: To examine the effects of a time-saving leg-press training program with moderate vibration on strength parameters, pain, and functional outcomes of patients after total knee arthroplasty (TKA) in comparison with functional physiotherapy. DESIGN: Randomized controlled trial. SETTING: Outpatient rehabilitation department at a university teaching hospital. PARTICIPANTS: Patients (N=55) with TKA were randomly allocated into 2 rehabilitation groups. INTERVENTIONS: Six weeks after TKA, participants either underwent isokinetic leg-press training combined with moderate vibration (n=26) of 15 minutes per session or functional physiotherapy (n=29) of 30 minutes per session. Both groups received therapy twice a week for a period of 6 weeks. Participants were evaluated at baseline (6wk after TKA) and after the 6-week rehabilitation program. MAIN OUTCOME MEASURES: The main outcome measure was maximal voluntary contraction (MVC) of the involved leg. Secondary outcome measures were pain assessed with a visual analog scale (VAS), range of motion, stair test, timed Up and Go test, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). RESULTS: Both groups showed statistically significant improvements in MVC of knee extensors measured on the knee dynamometer (leg-press group: from 0.8±.06 to 1±.09Nm/kg body weight [BW], physiotherapy group: from 0.7±.06 to 0.9±.06Nm/kg BW; P<.05) and in closed kinetic chain on the leg press (leg-press group: from 8.9±.77 to 10.3±1.06N/kg BW, physiotherapy group: from 6.7±.54 to 9.1±.70N/kg BW; P<.05) and in pain at rest (leg-press group: from 2±.36 to 1.3±.36 on the VAS, physiotherapy group: from 1.2±.28 to 1.1±.31; P<.05), WOMAC scores, and functional measurements after 6 weeks of training. There was no significant difference between the 2 groups concerning strength, pain, and functional outcomes after training (P>.05). CONCLUSIONS: Isokinetic leg-press training with moderate vibration and functional physiotherapy are both effective in regaining muscle strength and function after TKA; however, isokinetic leg-press training is considerably less time consuming.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/rehabilitación , Terapia por Ejercicio/métodos , Fuerza Muscular , Dolor/rehabilitación , Vibración/uso terapéutico , Anciano , Femenino , Hospitales de Enseñanza , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular , Modalidades de Fisioterapia , Rango del Movimiento Articular
3.
Diagnostics (Basel) ; 12(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35328120

RESUMEN

Langerhans cells represent the first immune cells that sense the entry of external molecules and microorganisms at the epithelial level in the skin. In this pilot case-study, we evaluated Langerhans cells density and progression of epidermal atrophy in permanent spinal cord injury (SCI) patients suffering with either lower motor neuron lesions (LMNSCI) or upper motor neuron lesions (UMNSCI), both submitted to surface electrical stimulation. Skin biopsies harvested from both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation for denervated degenerating muscles (DDM) delivered at home (h-bFES) by large anatomically shaped surface electrodes placed on the skin of the anterior thigh in the cases of LMNSCI patients or by neuromuscular electrical stimulation (NMES) for innervated muscles in the cases of UMNSCI persons. Using quantitative histology, we analyzed epidermal thickness and flattening and content of Langerhans cells. Linear regression analyses show that epidermal atrophy worsens with increasing years of LMNSCI and that 2 years of skin electrostimulation reverses skin changes, producing a significant recovery of epidermis thickness, but not changes in Langerhans cells density. In UMNSCI, we did not observe any statistically significant changes of the epidermis and of its content of Langerhans cells, but while the epidermal thickness is similar to that of first year-LMNSCI, the content of Langerhans cells is almost twice, suggesting that the LMNSCI induces an early decrease of immunoprotection that lasts at least 10 years. All together, these are original clinically relevant results suggesting a possible immuno-repression in epidermis of the permanently denervated patients.

5.
J Sports Sci Med ; 9(3): 431-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-24149637

RESUMEN

The centre of pressure (COP) movement during stance maintenance on a stable surface is commonly used to describe and evaluate static balance. The aim of our study was to test sensitivity of individual COP parameters to different stance positions which were used to address size specific changes in the support surface. Twenty-nine subjects participated in the study. They carried out three 60-second repetitions of each of the five balance tasks (parallel stance, semi-tandem stance, tandem stance, contra-tandem stance, single leg stance). Using the force plate, the monitored parameters included the total COP distance, the distance covered in antero-posterior and medio-lateral directions, the maximum oscillation amplitude in antero-posterior and medio-lateral directions, the total frequency of oscillation, as well as the frequency of oscillation in antero-posterior and medio-lateral directions. The parameters which describe the total COP distance were the most sensitive to changes in the balance task, whereas the frequency of oscillation proved to be sensitive to a slightly lesser extent. Reductions in the support surface size in each of the directions resulted in proportional changes of antero-posterior and medio- lateral directions. The frequency of oscillation did not increase evenly with the increase in the level of difficulty of the balance task, but reached a certain value, above which it did not increase. Our study revealed the monitored parameters of the COP to be sensitive to the support surface size manipulations. The results of the study provide an important source for clinical and research use of the body sway measurements. Key pointsTesting static balance with body sway related center of pressure (COP) parameters;Testing sensitivity of COP sub-components to manipulations of the stance position;Analytical approach to the study of COP parameters that enable the insight to the frequency/amplitude and direction-dependency relationships;Adding to the basic knowledge of static balance which can be applied to testing and training routines.

6.
Medicine (Baltimore) ; 98(52): e18509, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31876739

RESUMEN

To evaluate progression of skin atrophy during 8 years of complete Conus-Cauda Syndrome and its recovery after 2 years of surface Functional Electrical Stimulation a cohort study was organized and implemented.Functional assessments, tissue biopsies, and follow-up were performed at the Wilhelminenspital, Vienna, Austria; skin histology and immunohistochemistry at the University of Padova, Italy on 13 spinal cord injury persons suffering up to 10 years of complete conus/cauda syndrome. Skin biopsies (n. 52) of both legs were analyzed before and after 2 years of home-based Functional Electrical Stimulation delivered by large anatomically shaped surface electrodes placed on the skin of the anterior thigh. Using quantitative histology we analyzed: 1. Epidermis atrophy by thickness and by area; 2. Skin flattening by computing papillae per mm and Interdigitation Index of dermal-epidermal junctions; 3. Presence of Langerhans cells.Linear regression analyses show that epidermal atrophy and flattening worsen with increasing years post- spinal cord injury and that 2 years of skin electrostimulation by large anatomically shaped electrodes reverses skin changes (pre-functional Electrical Stimulation vs post-functional Electrical Stimulation: thickness 39%, P < .0001; area 41%, P < .0001; papillae n/mm 35%, P < 0.0014; Interdigitation index 11%, P < 0.018), producing a significant recovery to almost normal levels of epidermis thickness and of dermal papillae, with minor changes of Langerhans cells, despite 2 additional years of complete Conus-Cauda Syndrome.In complete Conus-Cauda Syndrome patients, the well documented beneficial effects of 2 years of surface h-b Functional Electrical Stimulation on strength, bulk, and muscle fiber size of thigh muscles are extended to skin, suggesting that electrical stimulation by anatomically shaped electrodes fixed to the skin is also clinically relevant to counteract atrophy and flattening of the stimulated skin. Mechanisms, pros and cons are discussed.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Epidermis/patología , Enfermedades de la Piel/terapia , Traumatismos de la Médula Espinal/complicaciones , Médula Espinal , Adulto , Atrofia , Biopsia , Humanos , Persona de Mediana Edad , Piel/patología , Enfermedades de la Piel/etiología , Enfermedades de la Piel/patología , Traumatismos de la Médula Espinal/patología , Síndrome , Muslo , Adulto Joven
7.
Gerontol Geriatr Med ; 4: 2333721418768998, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662923

RESUMEN

Physical activity plays an important role in preventing muscle atrophy and chronic diseases in adults and in the elderly. Calcium (Ca2+) cycling and activation of specific molecular pathways are essential in contraction-induced muscle adaptation. This study attains human muscle sections and total homogenates prepared from biopsies obtained before (control) and after 9 weeks of training by electrical stimulation (ES) on a group of volunteers. The aim of the study was to investigate about the molecular mechanisms that support functional muscle improvement by ES. Evidences of kinase/phosphatase pathways activation after ES were obtained. Moreover, expression of Sarcalumenin, Calsequestrin and sarco/endoplasmic reticulum Ca2+-ATPase (Serca) isoforms was regulated by training. In conclusion, this work shows that neuromuscular ES applied to vastus lateralis muscle of sedentary seniors combines fiber remodeling with activation of Ca2+-Calmodulin molecular pathways and modulation of key Ca2+-handling proteins.

8.
Neurol Res ; 39(7): 660-666, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28403681

RESUMEN

OBJECTIVES: Long-term lower motor neuron denervation of skeletal muscle is known to result in degeneration of muscle with replacement by adipose and fibrotic tissues. However, long-term survival of a subset of skeletal myofibers also occurs. METHODS: We performed transverse and longitudinal studies of patients with spinal cord injury (SCI), patients specifically complete Conus and Cauda Equina Syndrome and also of active and sedentary seniors which included analyses of muscle biopsies from the quadriceps m. RESULTS: Surprisingly, we discovered that human denervated myofibers survive years of denervation after full and irreversible disconnection from their motor neurons. We found that atrophic myofibers could be rescued by home-based Functional Electrical Stimulation (h-bFES), using purpose developed stimulators and electrodes. Although denervated myofibers quickly lose the ability to sustain high-frequency contractions, they respond to very long impulses that are able to allow for re-emergence of tetanic contractions. A description of the early muscle changes in humans are hampered by a paucity of patients suffering complete Conus and Cauda Equina Syndrome, but the cohort enrolled in the EU RISE Project has shown that even five years after SCI, severe atrophic myofibers with a peculiar cluster reorganization of myonuclei are present in human muscles and respond to h-bFES. CONCLUSIONS: Human myofibers survive permanent denervation longer than generally accepted and they respond to h-bFES beyond the stage of simple atrophy. Furthermore, long-term denervation/reinnervation events occur in elderly people and are part of the mechanisms responsible for muscle aging and again h-bFES was beneficial in delaying aging decay.


Asunto(s)
Envejecimiento/patología , Músculo Esquelético/patología , Traumatismos de la Médula Espinal/patología , Envejecimiento/fisiología , Animales , Atrofia , Terapia por Estimulación Eléctrica , Humanos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación
9.
Cell Metab ; 25(6): 1374-1389.e6, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28552492

RESUMEN

Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.


Asunto(s)
Envejecimiento/metabolismo , GTP Fosfohidrolasas/metabolismo , Músculo Esquelético/enzimología , Envejecimiento/genética , Envejecimiento/patología , Animales , Senescencia Celular/genética , Estrés del Retículo Endoplásmico/genética , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Músculo Esquelético/patología , Atrofia Muscular/enzimología , Atrofia Muscular/genética , Atrofia Muscular/patología , Tamaño de los Órganos , Respuesta de Proteína Desplegada/genética
10.
Eur J Transl Myol ; 26(4): 5972, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28078066

RESUMEN

Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active, i.e., on the slow motoneurons. The preferential reinnervation that follows along decades of increased activity maintains neuron and myofibers. All together the results open interesting perspectives for applications of FES and electroceuticals for rejuvenation of aged muscles to delay functional decline and loss of independence that are unavoidable burdens of advanced aging. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01679977.

11.
Eur J Transl Myol ; 25(4): 221-30, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26913160

RESUMEN

There is something in our genome that dictates life expectancy and there is nothing that can be done to avoid this; indeed, there is not yet any record of a person who has cheated death. Our physical prowess can vacillate substantially in our lifetime according to our activity levels and nutritional status and we may fight aging, but we will inevitably lose. We have presented strong evidence that the atrophy which accompanies aging is to some extent caused by loss of innervation. We compared muscle biopsies of sedentary seniors to those of life long active seniors, and show that these groups indeed have a different distribution of muscle fiber diameter and fiber type. The senior sportsmen have many more slow fiber-type groupings than the sedentary people which provides strong evidence of denervation-reinnervation events in muscle fibers. It appears that activity maintains the motoneurons and the muscle fibers. Premature or accelerated aging of muscle may occur as the result of many chronic diseases. One extreme case is provided by irreversible damage of the Conus and Cauda Equina, a spinal cord injury (SCI) sequela in which the human leg muscles may be completely and permanently disconnected from the nervous system with the almost complete disappearance of muscle fibers within 3-5 years from SCI. In cases of this extreme example of muscle degeneration, we have used 2D Muscle Color CT to gather data supporting the idea that electrical stimulation of denervated muscles can retain and even regain muscle. We show here that, if people are compliant, atrophy can be reversed. A further example of activity-related muscle adaptation is provided by the fact that mitochondrial distribution and density are significantly changed by functional electrical stimulation in horse muscle biopsies relative to those not receiving treatment. All together, the data indicate that FES is a good way to modify behaviors of muscle fibers by increasing the contraction load per day. Indeed, it should be possible to defer the muscle decline that occurs in aging people and in those who have become unable to participate in physical activities. Thus, FES should be considered for use in rehabilitation centers, nursing facilities and in critical care units when patients are completely inactive even for short periods of time.

12.
Cell Rep ; 8(5): 1509-21, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25176656

RESUMEN

The cellular basis of age-related tissue deterioration remains largely obscure. The ability to activate compensatory mechanisms in response to environmental stress is an important factor for survival and maintenance of cellular functions. Autophagy is activated both under short and prolonged stress and is required to clear the cell of dysfunctional organelles and altered proteins. We report that specific autophagy inhibition in muscle has a major impact on neuromuscular synaptic function and, consequently, on muscle strength, ultimately affecting the lifespan of animals. Inhibition of autophagy also exacerbates aging phenotypes in muscle, such as mitochondrial dysfunction, oxidative stress, and profound weakness. Mitochondrial dysfunction and oxidative stress directly affect acto-myosin interaction and force generation but show a limited effect on stability of neuromuscular synapses. These results demonstrate that age-related deterioration of synaptic structure and function is exacerbated by defective autophagy.


Asunto(s)
Envejecimiento , Autofagia , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Actinas/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia , Línea Celular , Humanos , Longevidad , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Musculares/metabolismo , Fuerza Muscular , Músculo Esquelético/fisiología , Miosinas/metabolismo , Unión Neuromuscular/ultraestructura , Estrés Oxidativo
13.
J Neuropathol Exp Neurol ; 73(4): 284-94, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24607961

RESUMEN

The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.


Asunto(s)
Envejecimiento/fisiología , Ejercicio Físico/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Cuádriceps/inervación , Adulto , Anciano , Análisis de Varianza , Biopsia , Femenino , Humanos , Laminina/metabolismo , Masculino , Actividad Motora , Fuerza Muscular/fisiología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Regeneración Nerviosa/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Adulto Joven
14.
Gait Posture ; 38(4): 708-11, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23566634

RESUMEN

Literature confirms the effects of vision and stance on body sway and indicates possible interactions between the two. However, no attempts have been made to systematically compare the effect of vision on the different types of stance which are frequently used in clinical and research practice. The biomechanical changes that occur after changing shape and size of the support surface suggest possible sensory re-weighting might take place. The purpose of this study was to assess the effect of vision on body sway in relation to different stance configurations and width. Thirty-eight volunteers performed four quiet stance configurations (parallel, semi-tandem, tandem and single leg), repeating them with open and closed eyes. Traditional parameters, recurrence quantification analysis and sample entropy were analyzed from the CoP trajectory signal. Traditional and recurrence quantification analysis parameters were affected by vision removal and stance type. Exceptions were frequency of oscillation, entropy and trapping time. The most prominent effect of vision elimination on traditional parameters was observed for narrower stances. A significant interaction effect between vision removal and stance type was present for most of the parameters observed (p<0.05). The interaction effect between medio-lateral and antero-posterior traditional parameters differed in linearity between stances. The results confirm the effect of vision removal on the body sway. However, for the medio-lateral traditional parameters, the effects did not increase linearly with the change in width and stance type. This suggests that removal of vision could be more effectively compensated by other sensory systems in semi-tandem stance, tandem and single legged stance.


Asunto(s)
Equilibrio Postural/fisiología , Postura/fisiología , Visión Ocular , Adulto , Femenino , Pie , Humanos , Masculino , Propiocepción/fisiología , Adulto Joven
15.
Neurol Res ; 32(1): 5-12, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20092690

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) causes muscle atrophy, which is particularly severe, due to inability to perform tetanic contractions, when lower motor neurons (LMN) are involved. We performed a longitudinal study in 25 Europeans suffering from complete conus cauda syndrome from 0.7 to 8.7 years comparing functional and structural thigh muscle properties before and after 2 years of home-based daily training by functional electrical stimulation (FES). The mid-term results after 1 year and preliminary muscle biopsy observations at project end-point from a subset of subjects are here reported. METHODS: Muscles were electrically stimulated at home by means of large surface electrodes and a custom-designed stimulator. The poor excitability of the LMN denervated muscles was first improved by twitch-contraction training. Then, tetanic contractions against progressively increased loading were elicited. Finally, standing-up exercises were daily performed. The bulk of thigh muscle was estimated by transverse computer tomography (CT) scan and force measurements. Needle biopsies of vastus lateralis were harvested before and after 2 years of FES. RESULTS: The 1 year home-based daily FES training induced: (1) very similar increases in muscle excitability and contractility in right and left legs; (2) feasibility to elicit tetanic contractions by means of train-stimulation with about ten times improvement of muscle force; (3) increase in the 26% of muscle bulk, as shown by CT scan analyses, improving appearance of limbs and muscle cushioning; (4) myofiber size increase (+94%) in a small series of muscle biopsies obtained after 2 years of FES. None of the subjects that performed 1 year home-based daily FES training (20 persons) had worsened their functional class, while 20% (4/20) improved to functional class 4, that is, the ability to stand. DISCUSSION: The European Union (EU) Project Rise shows that 'home-based daily FES training' is a safe and effective therapy that may maintain life-long physical exercise by active muscle contraction (FES is the only option for denervated muscle) as a procedure to recover the early-lost tetanic contractility of denervated muscle, and to counteract muscle atrophy in order to prevent clinical complications.


Asunto(s)
Terapia por Estimulación Eléctrica , Músculo Esquelético/patología , Músculo Esquelético/fisiología , Paraplejía/terapia , Adulto , Europa (Continente) , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neuronas Motoras , Contracción Muscular/fisiología , Desnervación Muscular , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/inervación , Atrofia Muscular , Manipulaciones Musculoesqueléticas , Paraplejía/patología , Paraplejía/fisiopatología , Recuperación de la Función , Muslo , Factores de Tiempo , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA