Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 115: 494-504, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967663

RESUMEN

Traumatic stress is associated with both accelerated epigenetic age and increased risk for dementia. Accelerated epigenetic age might link symptoms of traumatic stress to dementia-associated biomarkers, such as amyloid-beta (Aß) proteins, neurofilament light (NFL), and inflammatory molecules. We tested this hypothesis using longitudinal data obtained from 214 trauma-exposed military veterans (85 % male, mean age at baseline: 53 years, 75 % White) who were assessed twice over the course of an average of 5.6 years. Cross-lagged panel mediation models evaluated measures of lifetime posttraumatic stress disorder and internalizing and externalizing comorbidity (assessed at Time 1; T1) in association with T1 epigenetic age (per the GrimAge algorithm) and T1 plasma markers of neuropathology along with bidirectional temporal paths between T1 and T2 epigenetic age and the plasma markers. Results revealed that a measure of externalizing comorbidity was associated with accelerated epigenetic age (ß = 0.30, p <.01), which in turn, was associated with subsequent increases in Aß-40 (ß = 0.20, p <.001), Aß-42 (ß = 0.18, p <.001), and interleukin-6 (ß = 0.18, p <.01). T1 advanced epigenetic age and the T1 neuropathology biomarkers NFL and glial fibrillary acidic protein predicted worse performance on T2 neurocognitive tasks assessing working memory, executive/attentional control, and/or verbal memory (ps = 0.03 to 0.009). Results suggest that advanced GrimAge is predictive of subsequent increases in neuropathology and inflammatory biomarkers as well as worse cognitive function, highlighting the clinical significance of this biomarker with respect to cognitive aging and brain health over time. The finding that advanced GrimAge mediated the association between psychiatric comorbidity and future neuropathology is important for understanding potential pathways to neurodegeneration and early identification of those at greatest risk.


Asunto(s)
Envejecimiento Cognitivo , Disfunción Cognitiva , Demencia , Masculino , Humanos , Persona de Mediana Edad , Femenino , Estudios Longitudinales , Péptidos beta-Amiloides , Biomarcadores , Envejecimiento
2.
Clin Epigenetics ; 16(1): 38, 2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431614

RESUMEN

BACKGROUND: Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aß40, Aß42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS: Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aß40 and Aß42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS: The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (ß = 0.581, p < 0.001) than Factor A (ß = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (ß = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS: This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.


Asunto(s)
Enfermedad de Alzheimer , Demencia , Trastornos por Estrés Postraumático , Humanos , Epigenoma , Metilación de ADN , Apolipoproteína E4/genética , Trastornos por Estrés Postraumático/genética , Biomarcadores , Demencia/genética , Enfermedad de Alzheimer/genética , Proteínas Portadoras/genética
3.
Alzheimers Res Ther ; 16(1): 143, 2024 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951900

RESUMEN

BACKGROUND: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are associated with self-reported problems with cognition as well as risk for Alzheimer's disease and related dementias (ADRD). Overlapping symptom profiles observed in cognitive disorders, psychiatric disorders, and environmental exposures (e.g., head injury) can complicate the detection of early signs of ADRD. The interplay between PTSD, head injury, subjective (self-reported) cognitive concerns and genetic risk for ADRD is also not well understood, particularly in diverse ancestry groups. METHODS: Using data from the U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP), we examined the relationship between dementia risk factors (APOE ε4, PTSD, TBI) and subjective cognitive concerns (SCC) measured in individuals of European (n = 140,921), African (n = 15,788), and Hispanic (n = 8,064) ancestry (EA, AA, and HA, respectively). We then used data from the VA electronic medical record to perform a retrospective survival analysis evaluating PTSD, TBI, APOE ε4, and SCC and their associations with risk of conversion to ADRD in Veterans aged 65 and older. RESULTS: PTSD symptoms (B = 0.50-0.52, p < 1E-250) and probable TBI (B = 0.05-0.19, p = 1.51E-07 - 0.002) were positively associated with SCC across all three ancestry groups. APOE ε4 was associated with greater SCC in EA Veterans aged 65 and older (B = 0.037, p = 1.88E-12). Results of Cox models indicated that PTSD symptoms (hazard ratio [HR] = 1.13-1.21), APOE ε4 (HR = 1.73-2.05) and SCC (HR = 1.18-1.37) were positively associated with risk for ADRD across all three ancestry groups. In the EA group, probable TBI also contributed to increased risk of ADRD (HR = 1.18). CONCLUSIONS: The findings underscore the value of SCC as an indicator of ADRD risk in Veterans 65 and older when considered in conjunction with other influential genetic, clinical, and demographic risk factors.


Asunto(s)
Apolipoproteína E4 , Demencia , Trastornos por Estrés Postraumático , Veteranos , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Apolipoproteína E4/genética , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/psicología , Demencia/genética , Demencia/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Trastornos por Estrés Postraumático/genética , Trastornos por Estrés Postraumático/epidemiología , Estados Unidos/epidemiología
4.
Science ; 384(6698): eadh3707, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781393

RESUMEN

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Sitios Genéticos , Trastornos por Estrés Postraumático , Femenino , Humanos , Masculino , Amígdala del Cerebelo/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Trastorno Depresivo Mayor/genética , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Trastornos por Estrés Postraumático/genética , Biología de Sistemas , Análisis de Expresión Génica de una Sola Célula , Mapeo Cromosómico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA