Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurobiol Dis ; 191: 106404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184014

RESUMEN

Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Osteoporosis , Anciano , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Transcriptoma , Microglía , Osteoporosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular
2.
Ecotoxicol Environ Saf ; 208: 111526, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33099141

RESUMEN

Iron overload is a significant water quality issue in many parts of the world. Therefore, we evaluated the potential toxic effects of waterborne elevated iron on largemouth bass (Micropterus salmoides), a highly valued sport and aquaculture fish species. First, a 96 h-LC50 toxicity assay was performed to understand the tolerance limit of this species to iron; and was determined to be 22.07 mg/L (as Fe3+). Thereafter, to get a better insight on the fish survival during long-term exposure to high environmental iron (HEI) (5.52 mg/L, 25% of the determined 96 h-LC50 value), a suite of physio-biochemical, nitrogenous metabolic and ion-regulatory compensatory responses were examined at 7, 14, 21 and 28 days. Results showed that oxygen consumption dropped significantly at 21 and 28 days of HEI exposure. Ammonia excretion rate (Jamm) was significantly inhibited from day 14 and remained suppressed until the last exposure period. The transcript concentration of Rhesus glycoproteins Rhcg2 declined; likely diminishing ammonia efflux out of gills. These changes were also reflected by a parallel increment in plasma ammonia levels. Under HEI exposure, ion-balance was negatively affected, manifested by reduced plasma [Na+] and parallel inhibition in branchial Na+/K+-ATPase activity. Muscle water content was elevated in HEI-exposed fish, signifying an osmo-regulatory compromise. HEI exposure also increased iron burden in plasma and gills. The iron accumulation pattern in gills was significantly correlated with a suppression of Jamm, branchial Rhcg2 expression and Na+/K+-ATPase activity. There was also a decline in the glycogen, protein and lipid reserves in the hepatic tissue from 14 days, 28 days and 21 days, respectively. Overall, we conclude that sub-lethal chronic iron exposure can impair normal physio-biochemical and ion-regulatory functions in largemouth bass. Moreover, this data set can be applied in assessing the environmental risk posed by a waterborne iron overload on aquatic life.


Asunto(s)
Lubina/fisiología , Nitrógeno/metabolismo , Amoníaco/toxicidad , Animales , Exposición a Riesgos Ambientales , Branquias/efectos de los fármacos , Glicoproteínas/metabolismo , Iones/metabolismo , Hierro/metabolismo , Músculos/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Contaminantes Químicos del Agua/toxicidad
3.
J Dairy Res ; 85(3): 295-302, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29941059

RESUMEN

The hypothesis of the study was that inhibition of PPARß/δ increases glucose uptake and lactose synthesis in bovine mammary epithelial cells by reducing the expression of the glucose transporter mRNA destabiliser calreticulin. Three experiments were conducted to test the hypothesis using immortalised bovine mammary alveolar (MACT) and primary bovine mammary (PBMC) cells. In Experiment 1, the most effective dose to inhibit PPARß/δ activity among two synthetic antagonists (GSK-3787 and PT-s58) was assessed using a gene reporter assay. In Experiment 2, the effect on glucose uptake and lactose synthesis was evaluated by measuring glucose and lactose in the media and expression of related key genes upon modulation of PPARß/δ using GSK-3787, the synthetic PPARß/δ agonist GW-501516, or a combination of the two in cells cultivated in plastic. In Experiment 3, the same treatments were applied to cells cultivated in Matrigel and glucose and lactose in media were measured. In Experiment 1 it was determined that a significant inhibition of PPARß/δ in the presence or absence of fetal bovine serum was achieved with ≥ 1000 nm GSK-3787 but no significant inhibition was observed with PT-s58. In Experiment 2, inhibition of PPARß/δ had no effect on glucose uptake and lactose synthesis but they were both increased by GW-501516 in PBMC. The mRNA abundance of PPARß/δ target gene pyruvate dehydrogenase kinase 4 was increased but transcription of calreticulin was decreased (only in MACT cells) by GW-501516. Treatment with GSK-3787 did not affect the transcription of measured genes. No effects on glucose uptake or lactose synthesis were detected by modulation of PPARß/δ activity on cells cultivated in Matrigel. The above data do not provide support for the original hypothesis and suggest that PPARß/δ does not play a major role in glucose uptake and lactose synthesis in bovine mammary epithelial cells.


Asunto(s)
Bovinos , Glucosa/metabolismo , Lactosa/biosíntesis , Glándulas Mamarias Animales/metabolismo , PPAR delta/fisiología , PPAR-beta/fisiología , Animales , Benzamidas/farmacología , Células Cultivadas , Células Epiteliales/metabolismo , Femenino , PPAR delta/antagonistas & inhibidores , PPAR-beta/antagonistas & inhibidores , Proteínas Quinasas/genética , ARN Mensajero/análisis , Sulfonas/farmacología
4.
Physiol Genomics ; 48(4): 231-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26812986

RESUMEN

The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.


Asunto(s)
Regulación de la Expresión Génica , Lactosa/metabolismo , Proteínas de la Leche/biosíntesis , Leche/metabolismo , Animales , Bovinos , Epigénesis Genética , Ácidos Grasos/metabolismo , Redes Reguladoras de Genes , Glucolípidos , Glicoproteínas , Humanos , Gotas Lipídicas , Proteínas de la Leche/genética , Proteínas de la Leche/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
5.
Front Vet Sci ; 11: 1359213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450028

RESUMEN

Background: Natural feed additives in broiler feed contribute to the overall health, productivity, and economic viability of broiler chickens while meeting consumer demands and preferences for natural products. The purpose of this research was to determine the effect of green iron nanoparticles (Nano-Fe) and Halimeda opuntia supplementation in broiler diets on performance, ammonia excretion in excreta, Fe retention in tissues and serum, carcass criteria, and meat quality under hot environmental conditions. Methods: A total of 256 one-day-old male Ross 308 broiler chicks were randomly assigned to one of four feeding treatments for 42 days. Each treatment had eight replications, with eight chicks per replicate. The treatments were Negative control (CON), positive control (POS) supplemented with 1 g/kg Halimeda opuntia as a carrier, POS + 20 mg/kg Nano-Fe (NFH1), POS + 40 mg/kg Nano-Fe (NFH2). Results: When compared to CON and POS, dietary Nano-Fe up to 40 mg/kg enhanced (p < 0.001) growth performance in terms of body weight (BW), body weight gain (BWG), and feed conversion ratio (FCR). Nano-Fe had the highest BWG and the most efficient FCR (linear, p < 0.01, and quadratic, p < 0.01) compared to POS. Without affecting internal organs, the addition of Nano-Fe and POS enhanced dressing and reduced (p < 0.001) abdominal fat compared to control (CON). Notably, the water-holding capacity of breast and leg meat was higher (p < 0.001), and cooking loss was lower in broilers given Nano-Fe and POS diets against CON. In comparison to POS, the ammonia content in excreta dropped linearly as green Nano-Fe levels increased. When compared to CON, increasing levels of Nano-Fe levels boosted Fe content in the breast, leg, liver, and serum. The birds fed on POS showed better performance than the birds fed on CON. Conclusion: Green Nano-Fe up to 40 mg/kg fed to broiler diets using 1 g/kg Halimeda opuntia as a carrier or in single can be utilized as an efficient feed supplement for increasing broiler performance, Fe retentions, carcass characteristics, meat quality, and reducing ammonia excretions, under hot conditions.

6.
Animals (Basel) ; 14(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38338153

RESUMEN

Black soldier fly larvae (BSFL), Hermetia illucens (L.) (Diptera: Stratiomyidae), have emerged as a promising feed ingredient in broiler chicken diets, known for their high protein content, nutritional richness, and environmental sustainability. This review examines the effects of integrating BSFL into broiler feeds, focusing on aspects such as growth performance, nutrient digestibility, physiological responses, and immune health. The ability of BSFL to transform waste into valuable biomass rich in proteins and lipids underscores their efficiency and ecological benefits. Protein levels in BSFL can range from 32% to 53%, varying with growth stage and diet, offering a robust source of amino acids essential for muscle development and growth in broilers. While the chitin in BSFL poses questions regarding digestibility, the overall impact on nutrient utilization is generally favorable. The inclusion of BSFL in diets has been shown to enhance growth rates, feed efficiency, and carcass quality in broilers, with the larvae's balanced amino acid profile being particularly advantageous for muscle development. BSFL may also support gut health and immunity in broilers due to its bioactive components, potentially influencing the gut's microbial composition and enhancing nutrient absorption and overall health. Moreover, the capacity of BSFL to efficiently convert organic waste into protein highlights their role as an environmentally sustainable protein source for broiler nutrition. Nonetheless, further research is necessary to fully understand the long-term effects of BSFL, ideal inclusion rates, and the impact of varying larval diets and rearing conditions. It is crucial for poultry producers to consult nutritionists and comply with local regulations when incorporating new feed ingredients like BSFL into poultry diets.

7.
Front Vet Sci ; 11: 1382163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659457

RESUMEN

Integrating algae into poultry diets offers a promising avenue for enhancing nutrition, boosting sustainability efforts, and potentially stimulating disease resistance. This comprehensive review delves into the essence, diversity, chemical composition, and nutritional merits of algae, spotlighting their emergence as innovative nutrient sources and health supplements for poultry. The growing interest in algae within poultry nutrition stems from their diverse nutritional profile, boasting a rich array of proteins, lipids, amino acids, vitamins, minerals, and antioxidants, thus positioning them as valuable feed constituents. A key highlight of incorporating both macroalgae and microalgae lies in their elevated protein content, with microalgae varieties like Spirulina and Chlorella exhibiting protein levels of up to 50-70%, outperforming traditional sources like soybean meal. This premium protein source not only furnishes vital amino acids crucial for muscular development and overall health in poultry but also serves as an exceptional reservoir of omega-3 fatty acids, notably eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), presenting multiple health benefits for both poultry and consumers alike. Moreover, algae boast antioxidant properties attributed to bioactive compounds like phycocyanin and astaxanthin, mitigating oxidative stress and boosting the bird's immune response, thereby fostering robust health and disease resilience. Incorporating macroalgae and microalgae into poultry diets yields positive impacts on performance metrics. Research evidence underscores the enhancement of growth rates, feed conversion ratios, carcass quality, and meat attributes in broilers, while in layers, supplementation promotes increased egg production, superior egg quality, and increased concentrations of beneficial nutrients such as omega-3 fatty acids. Furthermore, algae hold promise for mitigating the environmental footprint of poultry production, though significant outcomes from trials remain sporadic, necessitating further research to elucidate optimal dosages and blends for different algae species in poultry diets. Standardizing the composition of algae utilized in research is imperative, paving the way for potential applications in poultry nutrition as growth stimulants and substitutes for antibiotics. Nonetheless, a deeper understanding of dosage, combination, and mechanism of action through rigorous scientific investigation is key to unlocking algae's full potential within poultry nutrition.

8.
Front Vet Sci ; 11: 1393335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015107

RESUMEN

Background: The potential significance and importance of green iron nanoparticles (Nano-Fe) in poultry production lie in their capability to effectively tackle iron deficiency in poultry. Iron, an indispensable mineral for numerous physiological functions in birds, such as oxygen transport, energy metabolism, and immune response, underscores the critical need for adequate iron levels. Nevertheless, conventional iron supplementation methods frequently face hurdles like limited bioavailability rates in poultry. To enhance performance, and promote sustainable broiler productivity, Nano-Fe showed promise as an efficient feed supplement for broiler chickens. The objective of this study was to assess the impact of green Nano-Fe inclusions in diets on growth, ammonia excretion, carcass criteria, and meat quality in broiler chickens. Methods: A total of 192 one-day-old male Ross 308 broiler chicks, were assigned to three treatment diets including Nano-Fe oxide at 0, 20, or 40 mg/kg, respectively, for 42 days. Each treatment comprised eight replicates, each with eight broiler chicks. Two phases comprised the 42-day study (0 to 21 days for the starter and 21 to 42 days for the finisher). Results: In comparison to the control group, the Nano-Fe oxide groups 20 mg/kg and 40 mg/kg linearly improved (p < 0.05) body weight (R 2 = 0.574) and body weight gain (R 2 = 0.367) under hot climatic conditions at 42 days of age. Furthermore, Nano-Fe oxide to broiler diets, improved (linear, p < 0.05) feed conversion ratio (R 2 = 0.424) throughout whole periods. The feed intake did not show any significant difference (p > 0.05) among groups during the experimental periods under hot climatic conditions. The ammonia content of excreta (R 2 = 0.454) was linearly decreased (p < 0.05) with increasing Nano-Fe oxide levels in broiler diets compared to control at 21 and 42 days of age under hot climatic conditions. Nano-Fe oxide positively influences cook loss, water-holding capacity, and iron content in various tissues. Moreover, it contributes to a healthier carcass yield and reduced abdominal fat. Conclusion: In conclusion, broiler chickens fed diets containing Nano-Fe oxide at 20 mg/kg and 40 mg/kg demonstrated enhanced growth performance, improved meat quality, increased iron content in tissues, higher dressing percentage, and reduced abdominal fat deposition. Future research should explore the impact of green Nano-Fe oxide on additional factors such as the microbiome and gene expression related to immunity and heat stress.

9.
Sci Rep ; 14(1): 18557, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122731

RESUMEN

This study aimed to evaluate the effects of dietary supplementation of nanoparticles of Selenium (Nano-Se) on productive performance, nutrient digestibility, carcass criteria, selenium retention, blood biochemistry, and histopathological examination of broiler chicken. A total of 192 1-day-old male broiler chickens (Cobb 500) were randomly assigned to one of four treatment diets, with each diet given to six replicates of eight chicks. The birds were randomly assigned to one of four treatment groups, each of which included Nano-Se at levels of 0, 0.2, 0.3, or 0.4 mg/kg. The feeding experiment lasted 35 days. Nano-Se addition to broiler diets at 0.2 and 0.3 mg/kg enhanced body weight and body weight gain linearly compared to the control diet and 0.4 mg/kg. The apparent digestibility coefficient of ether extracts linearly increased with increasing Nano-Se levels up to 0.4 mg/kg. Increasing Nano-Se decreased serum cholesterol, triglycerides, alanine aminotransaminase, aspartate aminotransaminase, and creatinine in broiler chickens. Also, serum antioxidants showed a significant increase with increasing Nano-Se levels. As Nano-Se levels were supplemented, improvements in cooking loss, water-holding capacity, and antioxidants were observed as compared to the control. Additionally, a noticeable improvement in meat quality was observed regarding the obtained meat characters. It was preferred to use low doses of Nano-Se (0.3 mg/kg), as tissue retention of Se for both meat and liver was more comparable to the control. In conclusion, nutritional supplementation with Nano-Se increased growth performance, nutrient digestibility, selenium retention, meat quality, blood biochemistry, histological indices, and antioxidant activity of broiler chickens. Overall, the best performance of broilers was observed with Nano-Se supplementation at 0.3 mg/kg, highlighting its potential as a novel supplement for broiler diets.


Asunto(s)
Alimentación Animal , Pollos , Suplementos Dietéticos , Nanopartículas , Selenio , Animales , Pollos/crecimiento & desarrollo , Selenio/administración & dosificación , Selenio/farmacología , Alimentación Animal/análisis , Nanopartículas/química , Masculino , Antioxidantes/metabolismo , Carne/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria
10.
Sci Rep ; 14(1): 14992, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951540

RESUMEN

This study investigates methane emissions from the livestock sector, representing by enteric fermentation and manure management, in Egypt from 1989 to 2021, focusing on spatial and temporal variations at the governorate level. Utilizing IPCC guidelines and emission factors, methane emissions were estimated for dairy and non-dairy cattle, buffalo, sheep and goat, poultry, and other livestock categories. Results reveal fluctuating emission patterns over the study period, with notable declines in certain governorates such as Kafr El-Sheikh and Red Sea, attributed to reductions in livestock populations. However, increasing trends were observed overall, driven by population growth in other regions. Hotspots of methane emissions were identified in delta governorates like Behera and Sharkia, as well as agriculturally rich regions including Menia and Suhag. While livestock populations varied between regions, factors such as water availability, climatic conditions, and farming practices influenced distribution. Notably, cluster analysis did not reveal regional clustering among governorates, suggesting emissions changes were not dependent on specific geographic or climatic boundaries. Manure management accounted for only 5-6% of total emissions, with emissions at their lowest in the last three years due to population declines. Despite the highest livestock populations being sheep and goats, emissions from enteric fermentation and manure management were highest from buffalo and cattle. This study underscores the importance of accurate data collection and adherence to IPCC recommendations for estimating GHG emissions, enabling the development of targeted mitigation strategies to address climate change challenges in the livestock sector.


Asunto(s)
Gases de Efecto Invernadero , Ganado , Metano , Animales , Egipto , Metano/análisis , Metano/metabolismo , Gases de Efecto Invernadero/análisis , Estiércol/análisis , Bovinos , Ovinos , Monitoreo del Ambiente/métodos
11.
Vet Sci ; 11(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38393075

RESUMEN

Fenugreek seeds (FSs) are a natural source of bioactive compounds that may modulate the immune system and gut microbiota in broilers. This study examined the effects of dietary fenugreek seed powder on immune-related gene expression and cecal microbiota composition in broilers. A total of 144 broiler chickens were randomly allocated to three dietary groups, CON (0 g/kg FS, FS5 (5 g/kg FS) and FS10 (10 g/kg FS), each with 6 replicates of 8 birds. Ileum tissues and cecal contents were collected on day 42 for the mRNA expression of inflammation and antimicrobial defense-related genes and cecal microbiome diversity, respectively. The results indicated that fenugreek seeds downregulated mRNA-level inflammation and antimicrobial defense-related genes: IL6, IL8L2, CASP6, PTGS2, IRF7, AvBD9, AvBD10, and AvBD11. Moreover, fenugreek seeds altered the cecal microbial community by increasing the population of Firmicutes and decreasing the population of Actinobacteriota, Gemmatimonadota and Verrucomicrobiota at the phylum level and increasing Alistipes, Bacteriodes and Prevotellaceae at the genera level. These findings suggest that fenugreek seeds have a positive impact on the immunological profile and microbiome of broiler chickens, possibly through the interplay of the immune system and the gut microbiome.

12.
Poult Sci ; 103(10): 104130, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39121644

RESUMEN

Intensive broiler production systems face challenges like enteric diseases, impacting global food security. Strategies to enhance broiler immunity and gut health, particularly amidst antibiotic growth promoter restrictions, are crucial. The present study investigated the combined effects of fenugreek seeds (FS) and Bacillus-based direct-fed microbials (DFM) on immune-related gene expression in the ileum and alteration of microbial population in the cecum of broiler. The study involved 160 Ross 308 broiler chicks, which were divided into four groups consisting of 5 replicates, each containing eight birds. The chicks were grown for a period of 42 d, during which they had ad libitum access to feed and water. Dietary treatments were: Control (basal diet), FS5 (basal + 5g/kg fenugreek seeds), FS5DFM (basal + 5g/kg fenugreek seeds + 0.1g/kg Bacillus-based DFM), and DFM (basal + 0.1g/kg Bacillus-based DFM). Ileum tissue and cecal contents were collected on d 42 for gene expression and gut microbiome analysis. Ileal gene expression analysis revealed the downregulation of IL-6, IL-8L2, CASP6, PTGS2, and IRF7 in both FSs and DFMs groups compared to the control, suggesting individual immunomodulatory effects. However, avian ß-defensin genes exhibited complex regulation, highlighting the need for further investigation. Cecal microbiome diversity remained stable, with subtle shifts in specific taxa influenced by FSs and DFMs. Interestingly, the combination of the FSs and DFMs uniquely impacted specific taxa, including Clostridiales vadin BB60. These findings suggest that both FSs and DFMs demonstrated potential for improving broiler immunity through inflammation reduction. The combination of FSs and DFMs offers a synergistic effect in immune modulation and specific microbial modulation, warranting further investigation with pathogen challenge models for comprehensive understanding.

13.
Vet Sci ; 11(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39195837

RESUMEN

Enhancing the sustainability of chicken farming involves improving health and productivity and product qualities. This study explores the influence of Spirulina platensis (SP) supplementation on the productivity, egg quality, shelf life during storage, and blood biochemistry of laying hens. A total of 192 thirty-nine-week-old White Leghorn hens were randomly divided into 4 dietary groups: a control group and 3 treatment groups receiving 2.5 g/kg, 5 g/kg, or 10 g/kg of SP, respectively. The study was conducted for six weeks with measuring feed intake, feed conversion ratio, egg production, egg quality, shelf life, and blood biochemistry. The results demonstrated significant enhancements in egg weight (p < 0.05) and egg mass (p < 0.05) in the treatment of SP groups. The SP treated hens showed significant improvements in yolk color (p < 0.05) and Haugh unit scores (p < 0.05). The SP supplementation showed a hepatoprotective effect, as indicated by significant reduction in Alanine aminotransferase (ALT) (p < 0.05) and alkaline phosphatase (ALP) (p < 0.05) levels; however, increases in total protein, albumin, and globulin levels were observed. Furthermore, the egg quality of stored eggs for 21 days linearly increased with increments in the SP levels. In conclusion, it can be speculated that adding SP at 2.5 g/kg and 5 g/kg can significantly improve the productivity of laying hens, eggs' quality, shelf life, and blood biochemistry, thereby contributing to a more sustainable and efficient chicken production.

14.
J Sci Food Agric ; 93(3): 587-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22903784

RESUMEN

BACKGROUND: The increase in drug-resistant bacteria and the ban on antibiotic growth promoters worldwide make the search for novel means of preventing bacterial infection and promoting growth performance imperative. In this sense, antimicrobial peptides are thought to be ideal candidates owing to their antimicrobial properties, broad spectrum of activity and low propensity for development of bacterial resistance. The aim of the present study was to investigate the effect of dietary supplementation with antimicrobial peptide-P5 (AMP-P5) on weanling pig nutrition. RESULTS: A total of 240 weanling pigs were allotted to four treatments on the basis of initial body weight. There were four replicates in each treatment, with 15 pigs per replicate. Dietary treatments were negative control (NC, basal diet without antimicrobial), positive control (PC, basal diet + 1.5 g kg(-1) apramycin), basal diet with 40 mg kg(-1) AMP-P5 (P5-40) and basal diet with 60 mg kg(-1) AMP-P5 (P5-60). Pigs fed the PC or P5-60 diet showed improved (P < 0.05) overall growth performance, apparent total tract digestibility of dry matter, crude protein and gross energy and reduced (P < 0.05) faecal and intestinal coliforms compared with pigs fed the NC diet. CONCLUSION: The results obtained in this study indicate that dietary supplementation with 60 mg kg(-1) AMP-P5 has the potential to improve the growth performance and apparent total tract digestibility of nutrients and reduce coliforms in weanling pigs.


Asunto(s)
Antiinfecciosos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Digestión/efectos de los fármacos , Heces/microbiología , Intestinos/microbiología , Sus scrofa/crecimiento & desarrollo , Animales , Péptidos Catiónicos Antimicrobianos/química , Suplementos Dietéticos , Mucosa Intestinal/metabolismo , Intestinos/anatomía & histología , Péptidos/administración & dosificación , Sus scrofa/metabolismo , Sus scrofa/microbiología , Destete
15.
Vet Sci ; 10(10)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37888564

RESUMEN

Phytogenic compounds can improve feed efficiency, meat quality, and the health status of chickens under hot climatic conditions. The current study investigated the impact of the bioactive lipid compounds of oregano and peppermint and their combination on the sustainability of meat production and the health of broiler chicks in hot climatic conditions. Two hundred and fifty-six one-day-old broiler chicks were distributed into four treatment groups. The birds were fed a control diet, bioactive lipid compounds of oregano (BLCO, 150 mg/kg), bioactive lipid compounds of peppermint (BLCP, 150 mg/kg), or a combination of BLCO and BLCP at 150 mg/kg each for 35 days. Each treatment included 8 replicates, each with 8 birds. The results showed that adding BLCO and BLCP separately or in combination to broiler diets improved body weight, body weight gain, and feed conversion ratio. BLCO, BLCP, or their combination increased the percentages of the dressing and gizzard and lowered the percentage of abdominal fat as compared to the control. Supplementation of BLCO, BLCP, or their combination decreased serum cholesterol, triglycerides, aspartate aminotransferase, alanine transaminase, creatinine, and urea compared to control. BLCO, BLCP, or their combination reduced cook and drip loss in the meat of broilers. In conclusion, birds fed diets containing BLCO and BLCP, either independently or in combination, showed improvements in performance, blood biochemistry, and meat quality in hot climatic conditions.

16.
Animals (Basel) ; 13(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570281

RESUMEN

The objective of the study was to evaluate the impact of various concentrations of orange (Citrus sinensis) peel meal (OPM), with or without the supplementation of multi-enzymes, on the growth performance, nutrient digestibility, antioxidant properties, and blood metabolic profile of broiler chickens. The experiment was conducted on 240 one-day-old Arbor Acres broiler chicks, assigned to eight dietary treatments with 30 broilers per treatment group. Four dietary orange peel meal (OPM) concentrations were supplemented, namely, the control (without OPM), and with 80, 160, and 240 g/kg of the diet. To each of these diets was added two concentrations of multi-enzyme inclusion (0 or 0.6 g as a combination of 0.5 g of Nutrikem and 0.1 g Optiphos per kg diet) in a completely randomized design in a 4 × 2 factorial arrangement. The experiment lasted until 42 days of age. Body weight gain (BWG) was influenced during the grower period (22-42 days) and the overall period (0-42 days), and the feed conversion ratio (FCR) was significantly improved by supplementations of OPM compared with the control for 22-42 days and overall (0-42 days) periods. Moreover, BWG, FCR during the grower and overall periods, and crude fiber digestibility were improved (p < 0.01) by multi-enzyme supplementation compared to the non-supplemented groups. Broilers with diets supplemented with OPM had considerably lower abdominal fat (p < 0.01) than the control. In addition, when compared to the non-supplemented enzyme group, serum T3 and T3/T4 ratios were significantly improved in response to enzyme addition. When compared to the control group, superoxide dismutase (SOD) was significantly higher in the OPM groups, showing the largest improvement in antioxidant response. Interaction effects were observed only for serum SOD levels. Based on our findings, it is recommended that OPM be used as a feed supplement for raising broilers, and adding 0.6 m g/kg of multi-enzymes could provide additional benefits to the performance of broilers.

17.
Sci Rep ; 13(1): 943, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653392

RESUMEN

This study aims to evaluate the effect of hydroponic barley (HB) by substituting control diet with 25% HB with or without enzymes on rabbit performance, nutrient digestibility, and economic efficiency. A total number of 60 growing male HyPlus rabbits (average body weight 669 ± 12 g, 30 days of age) were utilized in the present study. The rabbits were randomly assigned to three groups (n = 20 rabbits per group). The first group served as a control (C). The other two groups were fed the control diet substituted with 25% hydroponic barley HB (group CHB), and the control diet substituted with 25% HB added with 0.5 g/kg enzymes (CHBE). The experiment lasted for 56 days. The results revealed that daily body weight gain improved (P < 0.05) by 18.64% and 23.94%, and feed conversion ratio improved by 3.74% and 17.91% than control, respectively, during 30-86 days of age in CHB and CHBE groups. The economic efficiency was improved (P < 0.05) by 32.17% and 39.60% in CHB and CHBE diets, respectively, compared to control; and nutrient digestibility, and mineral retention of growing rabbits were also improved (P < 0.05) by substituting HB with or without enzymes compared to control diet. Overall, the best rabbit performances were observed in both CHB and CHBE groups. In conclusion, these results suggest that substituting 25% of concentrated control diet by hydroponic barley with or without enzymes have positive effects in a sustainable way on growth performance, nutrient digestibility, and economic efficiency of growing rabbits.


Asunto(s)
Hordeum , Animales , Masculino , Conejos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Peso Corporal , Dieta , Digestión , Hidroponía
18.
Animals (Basel) ; 13(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067076

RESUMEN

The aim of this study was to investigate the effects of the in ovo feeding of green nanoparticles of silver (Nano-Ag), probiotics, and their combination on hatchability, carcass criteria and internal organs, biochemical parameters, and cecal microbial populations in hatched one-day-old chicks. On day 18 of incubation, 250 live embryo eggs were weighed and randomly assigned to one of five treatment groups: a negative control group, a positive control group consisting of chicks injected with 0.2 mL physiological saline, a group consisting of chicks injected with 0.2 mL Nano-Ag, a group consisting of chicks injected with 0.2 mL probiotics (Bifidobacterium spp.), and a group consisting of chicks injected with 0.2 mL combination of Nano-Ag and probiotics (1:1). The results showed that the in ovo injection of Nano-Ag or probiotics, alone or in combination, had no effect on hatchability, live body weight, or internal organs but improved (p < 0.05) chick carcass yield compared to the control groups. Furthermore, in ovo feeding decreased (p < 0.05) serum levels of cholesterol, triglycerides, urea, creatinine, alanine aminotransferase, and aspartate aminotransferase, as well as cecal E. coli, but increased Bifidobacterium spp. when compared to the control groups. Based on these findings, in ovo injections of green Nano-Ag and probiotics, either alone or in combination, have the potential to improve chick health and balance the microbial populations in hatched one-day-old chicks.

19.
Front Vet Sci ; 10: 1298587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089709

RESUMEN

Background: The objective of the present study was to evaluate the potential synergistic impact of the combination of fenugreek seeds (FS) and Bacillus-based direct-fed microbials (DFM) on growth performance, intestinal health, and hematological parameters of broiler chickens. Methods: A total of 160 one-day-old (Ross 308) broiler chicks were randomly assigned to a 2 × 2 factorial arrangement, with two levels of FS (0 and 5 g/kg) and two levels of Bacillus-DFM (0 and 0.1 g/kg), with five replicates of 8 birds each. Results: The result showed that dietary supplementation of FS at 5 g/kg did not improve the growth performance of broilers but impaired the early growth performance by reducing body weight gain and increasing feed conversion ratio, which was recovered during finisher phase. Dietary supplementation of Bacillus-based DFM at 0.1 g/kg did not affect the performance variables but increased the feed conversion ratio. The interaction of fenugreek seeds and Bacillus-based DFM showed synergistic effects on growth performance during the later stages of production. However, antagonistic effects were observed on the blood parameters and the gut morphology. Conclusion: This study demonstrated that FS and DFM had different effects on the broiler health and production depending on the phase of production. The interaction between FS and DFM revealed synergistic effects on growth performance during the finisher phase, but antagonistic effects on blood parameters and gut morphology. Further studies are needed to elucidate the underlying mechanisms and optimize the dosage and combination of FS and DFM for broiler health and production.

20.
Animals (Basel) ; 13(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37370443

RESUMEN

This study aimed to evaluate the efficacy of dietary Acacia nilotica bark bioactive lipid compounds (ANBBLCs) as novel feed additives on the growth performance, carcass criteria, antioxidants, and antimicrobial activities of growing male rabbits. A total of 100 California male weanling rabbits aged 35 days were divided into four nutritional treatments, each of which contained ANBBLCs at concentrations of 0 (control group), 50, 100, and 150 mg/kg diet (n = 25 per treatment, each replication consisting of one animal). The average body weight of the animals was 613 ± 14 g. The experiments lasted for 56 days. Dietary ANBBLC levels linearly improved (p < 0.05) the body weight, body weight gain, and feed conversion ratio (FCR) of rabbits. Furthermore, with increasing concentrations of ANBBLCs, the total antioxidant capacity of blood and liver tissue was linearly (p < 0.05) enhanced. Lactobacillus increased and Staphylococcus decreased (p < 0.05) in comparison to the control group when ANBBLC levels were added to the diets of rabbits. Rabbit diets supplemented with ANBBLCs increased dressing percentages and decreased abdominal fat. This study shows that ANBBLCs can be used as a feed additive to enhance the growth performance, carcass criteria, antioxidant, and antibacterial properties of growing rabbits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA