Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Ther ; 28(9): 2023-2043, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32531237

RESUMEN

Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-ß1 (TGF-ß MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-ß MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-ß MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-ß MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-ß MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-ß MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-ß1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.


Asunto(s)
Aloinjertos/inmunología , Trasplante de Córnea/efectos adversos , Rechazo de Injerto/inmunología , Rechazo de Injerto/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Animales , Células Cultivadas , Técnicas de Cocultivo/métodos , Medios de Cultivo Condicionados , Femenino , Supervivencia de Injerto/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Activación de Linfocitos/inmunología , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Proteínas Recombinantes/farmacología , Linfocitos T Reguladores/inmunología , Trasplante Homólogo/métodos , Resultado del Tratamiento
2.
FASEB J ; 33(8): 9404-9421, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31108041

RESUMEN

Mesenchymal stromal cells (MSCs) have shown promise as a therapy for immune-mediated disorders, including transplant rejection. Our group previously demonstrated the efficacy of pretransplant, systemic administration of allogeneic but not syngeneic MSCs in a rat cornea transplant model. The aim of this study was to enhance the immunomodulatory capacity of syngeneic MSCs. In vitro, MSCs licensed with TNF-α/IL-1ß (MSCsTNF-α/IL-1ß) suppress syngeneic lymphocyte proliferation via NO production. In vivo, when administered post-transplantation, nonlicensed syngeneic MSCs improved graft survival from 0 to 50% and MSCsTNF-α/IL-1ß, in an NO-dependent manner, improved survival to 70%. Improved survival was associated with increased CD4+CD25+forkhead box P3+ regulatory T (Treg) cells and decreased proinflammatory cytokine expression in the draining lymph node. MSCsTNF-α/IL-1ß demonstrated a more potent immunomodulatory capacity compared with nonlicensed MSCs, promoting an immune-regulatory CD11b+B220+ monocyte/macrophage population and significantly expanding Treg cells in the lungs and spleen. Ex vivo, we observed that lung-derived myeloid cells act as intermediaries of MSC immunomodulatory function. MSC-conditioned myeloid cells suppressed stimulated lymphocyte proliferation and promoted expansion of Treg cells from naive lymphocytes. This work illustrates how syngeneic MSC therapy can be enhanced by licensing and optimization of timing strategies and further highlights the important role of myeloid cells in mediating MSC immunomodulatory capacity.-Murphy, N., Treacy, O., Lynch, K., Morcos, M., Lohan, P., Howard, L., Fahy, G., Griffin, M. D., Ryan, A. E., Ritter, T. TNF-α/IL-1ß-licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3+ regulatory T cells in the lung.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Interleucina-1beta/farmacología , Pulmón/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Células Cultivadas , Citometría de Flujo , Factores de Transcripción Forkhead/genética , Interferón gamma/farmacología , Lentivirus/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Óxidos de Nitrógeno/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Stem Cells ; 36(8): 1210-1215, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29726063

RESUMEN

Mesenchymal stem/stromal cells (MSC) are an immunomodulatory cell population which are under preclinical and clinical investigation for a number of inflammatory conditions including transplantation. In this study, a well-established rat corneal transplantation model was used to test the ability of human MSC to prolong corneal allograft rejection-free survival using a pre-transplant intravenous infusion protocol previously shown to be efficacious with allogeneic rat MSC. Surprisingly, pre-transplant administration of human MSC had no effect on corneal allograft survival. In vitro, human MSC failed to produce nitric oxide and upregulate IDO and, as a consequence, could not suppress rat T-cell proliferation. Furthermore, human MSC were not activated by rat pro-inflammatory cytokines. Thus, interspecies incompatibility in cytokine signaling leading to failure of MSC licensing may explain the lack of in vivo efficacy of human MSC in a rat tissue allotransplant model. Interspecies incompatibilities should be taken into consideration when interpreting preclinical data efficacy data in the context of translation to clinical trial. Stem Cells 2018;36:1210-1215.


Asunto(s)
Inmunomodulación , Células Madre Mesenquimatosas/citología , Aloinjertos/efectos de los fármacos , Aloinjertos/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/farmacología , Supervivencia de Injerto/efectos de los fármacos , Supervivencia de Injerto/inmunología , Humanos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Endogámicas Lew , Especificidad de la Especie
4.
Curr Opin Organ Transplant ; 21(6): 559-567, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27801687

RESUMEN

PURPOSE OF REVIEW: This article reviews the literature on the therapeutic potential of mesenchymal stem cells (MSCs) to prolong corneal allograft survival. RECENT FINDINGS: To date, only small numbers studies have investigated the MSC ability to modulate corneal allograft survival. Most reports have shown positive results, which is encouraging, however as different MSC-application strategies (time point of injection, cell number/number of injections, route of injection, MSC source, MSC licensing) have been employed in various animal models it is difficult to compare and validate the results. The MSC ability to promote graft survival has been attributed to their modulation of the recipient immune system, altering the Th1/Th2 balance, expanding Foxp3 regulatory T cells, polarizing macrophages and inhibiting intra-graft infiltration of antigen presenting cells. More in depth analysis is required to elucidate the mechanism of MSC-immunomodulation in vivo. SUMMARY: MSCs have shown the potential to modulate corneal allograft rejection in various models using MSCs from different species. In particular for high-risk patients with poor prognosis MSC therapy might be a promising approach to promote corneal allograft survival. First-in-man clinical trials with MSC will hopefully shed new light on MSC-mediated immunomodulation in vivo and contribute to the restoration of vision in patients receiving corneal allografts.


Asunto(s)
Aloinjertos , Trasplante de Córnea , Supervivencia de Injerto , Trasplante de Células Madre Mesenquimatosas , Animales , Humanos , Inmunomodulación
5.
Mol Ther ; 22(3): 655-667, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24184966

RESUMEN

Allogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion. Differentiation altered immunogenicity as evidenced by induced proliferation of allogeneic T cells and increased susceptibility to cytotoxic lysis by allo-specific T cells. Undifferentiated or differentiated allo-MSCs were implanted subcutaneously, with and without alginate encapsulation. Increased CD3(+) and CD68(+) infiltration was evident in differentiated and splenocyte encapsulated implants only. Without encapsulation, increased local memory T-cell responses were detectable in recipients of undifferentiated and differentiated MSCs; however, only differentiated MSCs induced systemic memory T-cell responses. In recipients of encapsulated allogeneic cells, only differentiated allo-MSCs induced memory T-cell responses locally and systemically. Systemic alloimmune responses to differentiated MSCs indicate immunogenicity regardless of alginate encapsulation and may require immunosuppressive therapy for therapeutic use.


Asunto(s)
Complejo CD3/metabolismo , Condrogénesis , Dipeptidil Peptidasa 4/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Linfocitos T/inmunología , Alginatos/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos/metabolismo , Humanos , Ratas , Ratas Endogámicas Lew , Linfocitos T/metabolismo , Trasplante Homólogo
6.
Immunol Cell Biol ; 91(1): 40-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23207278

RESUMEN

Mesenchymal stem (stromal) cells (MSCs) have potent anti-inflammatory/immunosuppressive properties which underlie much of their therapeutic potential. This fact has led to the widely accepted belief that MSCs from genetically unrelated individuals (allogeneic (allo)-MSCs) can be used therapeutically with equal efficacy to autologous MSCs and without triggering the donor-specific immune responses that are typically associated with allo-transplants. In this article, we critically review available experimental data to determine whether good in vivo evidence exists in support of the 'immune privileged' status of allo-MSCs. We also examine published studies regarding the immunogenicity of allo-MSCs following activation ('licensing') by inflammatory stimuli or following differentiation. Among the identified studies which have addressed in vivo immunogenicity of allo-MSCs, there was substantial variability as regards experimental species, disease model, route of MSC administration, cell dose and stringency of the immunological assays employed. Nonetheless, the majority of these studies has documented specific cellular (T-cell) and humoral (B-cell/antibody) immune responses against donor antigens following administration of non-manipulated, interferon-γ-activated and differentiated allo-MSCs. The consequences of such anti-donor immune responses were also variable and ranged from reduced in vivo survival of allo-MSCs with accelerated rejection of subsequent allogeneic transplants to apparent promotion of donor-specific tolerance. On the basis of these findings and on existing knowledge of allo-antigen recognition from the field of transplant immunology, we propose that the concept of the immune privileged nature of allo-MSCs should be reconsidered and that the range and clinical implications of anti-donor immune responses elicited by allo-MSCs be more precisely studied in human and animal recipients.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Donante no Emparentado , Animales , Formación de Anticuerpos , Linfocitos B/inmunología , Linfocitos B/patología , Rechazo de Injerto/patología , Humanos , Inmunidad Celular , Isoantígenos/inmunología , Células Madre Mesenquimatosas/patología , Linfocitos T/inmunología , Linfocitos T/patología , Trasplante Autólogo , Trasplante Homólogo
7.
Stem Cell Res Ther ; 12(1): 227, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33823917

RESUMEN

BACKGROUND: Systemic administration of mesenchymal stromal cells (MSCs) has been efficacious in many inflammatory disease settings; however, little data are available on the potential immunomodulatory effects following local MSC administration in the context of corneal transplantation. The purpose of this study was to assess the potential of subconjunctival injection of MSCs to promote corneal allograft survival. METHODS: MSCs were isolated from female C57BL/6 (H-2k) or Balb/c (H-2d) mice and extensively characterized. An allogeneic mouse corneal transplant model was used with Balb/c mice as recipients of C57BL/6 grafts. A dose-finding study starting with 5 × 105 MSCs injected subconjunctivally at day - 7 was tested first followed by a more clinically translatable low-dose single or dual injection strategy on day - 1 and day + 1 before/after transplantation. Graft transparency served as the primary indicator of transplant rejection while neovascularization was also recorded. Lymphocytes (from draining lymph nodes) and splenocytes were isolated from treatment groups on day 2 post-transplantation and characterized by flow cytometry and qRT-PCR. RESULTS: Both high- and low-dose injection of allogeneic MSCs on day - 7 led to 100% graft survival over the observation period. Moreover, low-dose dual subconjunctival injection of 5 × 104 allogeneic MSCs on day - 1 or day + 1 led to 100% allograft survival in transplant recipients (n = 7). We also demonstrate that single administration of allogeneic MSCs on either day - 1 or day + 1 promotes rejection-free graft survival in 100% (n = 8) and 86% (n = 7) of transplanted mice, respectively. Early time point ex vivo analysis suggests modulation of innate immune responses towards anti-inflammatory, pro-repair responses by local MSC administration. CONCLUSION: This work demonstrates that low-dose subconjunctival injection of allogeneic MSCs successfully promotes corneal allograft survival and may contribute to refining future MSC immunotherapies for prevention of corneal allograft rejection.


Asunto(s)
Trasplante de Córnea , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Femenino , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
8.
Transplantation ; 103(12): 2468-2478, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31765363

RESUMEN

Human corneal transplantation (keratoplasty) is typically considered to have superior short- and long-term outcomes and lower requirement for immunosuppression compared to solid organ transplants because of the inherent immune privilege and tolerogenic mechanisms associated with the anterior segment of the eye. However, in a substantial proportion of corneal transplants, the rates of acute rejection and/or graft failure are comparable to or greater than those of the commonly transplanted solid organs. Critically, while registry data and observational studies have helped to identify factors that are associated with increased risk of corneal transplant failure, the extent to which these risk factors operate through enhancing immune-mediated rejection is less clear. In this overview, we summarize a range of important recent clinical and basic insights related to high-risk corneal transplantation, the factors associated with graft failure, and the immunological basis of corneal allograft rejection. We highlight critical research areas from which continued progress is likely to drive improvements in the long-term survival of high-risk corneal transplants. These include further development and clinical testing of predictive risk scores and assays; greater use of multicenter clinical trials to optimize immunosuppressive therapy in high-risk recipients and robust clinical translation of novel, mechanistically-targeted immunomodulatory and regenerative therapies that are emerging from basic science laboratories. We also emphasize the relative lack of knowledge regarding transplant outcomes for infection-related corneal diseases that are common in the developing world and the potential for greater cross-pollination and synergy between corneal and solid organ transplant research communities.


Asunto(s)
Enfermedades de la Córnea/cirugía , Trasplante de Córnea/efectos adversos , Rechazo de Injerto/inmunología , Inmunosupresores/uso terapéutico , Aloinjertos , Rechazo de Injerto/tratamiento farmacológico , Supervivencia de Injerto , Humanos , Factores de Riesgo
9.
Cancer Immunol Res ; 6(11): 1426-1441, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30228206

RESUMEN

Stromal cells of mesenchymal origin reside below the epithelial compartment and provide structural support in the intestine. These intestinal stromal cells interact with both the epithelial cell compartments, as well as infiltrating hematopoietic immune cells. The importance of these cells in regulating immune homeostasis during inflammation is well recognized. However, little is known about their function and phenotype in the inflammatory tumor microenvironment. Using a syngeneic, immunogenic model of colorectal cancer, we showed that TNFα-initiated inflammatory signaling in CT26 colorectal cancer cells selectively induced PD-L1 expression in stromal cells. Using CD274 shRNA and antibody-mediated approaches, we showed that stromal cell PD-L1 potentiated enhanced immunosuppression, characterized by inhibition of activated CD8+ granzyme B-secreting T cells in vitro, and the inhibition of CD8+ effector cells was associated with enhanced tumor progression. Stromal cell immunosuppressive and tumor-promoting effects could be reversed with administration of anti-PD-1 in vivo We validated our findings of stromal cell CD274 expression in two cohorts of clinical samples and also observed PD-L1 induction on human stromal cells in response to exposure to the inflammatory secretome from human colon cancer cells, irrespective of microsatellite instability. Collectively, our data showed that tumor-associated stromal cells support T-cell suppression by PD-L1 induction, which is dependent on colon cancer inflammatory signaling. Our findings reveal a key role of mesenchymal stromal cells PD-L1 in suppression of CD8+ antitumor immune responses and potentiation of colorectal cancer progression. Cancer Immunol Res; 6(11); 1426-41. ©2018 AACR.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/inmunología , Neoplasias del Colon/inmunología , Células del Estroma/inmunología , Animales , Antígeno B7-H1/genética , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Humanos , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Células del Estroma/metabolismo , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Front Immunol ; 9: 2666, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30515159

RESUMEN

High-risk cornea transplant recipients represent a patient population with significant un-met medical need for more effective therapies to prevent immunological graft rejection due to heightened anti-donor immune response. In this study, a rat model of pre-existing anti-donor immunity was developed in which corneal allografts were rejected earlier than in non-pre-sensitized recipients. In this model, third-party (non-donor, non-recipient strain) allogeneic mesenchymal stromal cells (allo-MSC) were administered intravenously 7 and 1 days prior to transplantation. Rejection-free graft survival to 30 days post-transplant improved from 0 to 63.6% in MSC-treated compared to vehicle-treated control animals (p = < 0.0001). Pre-sensitized animals that received third-party allo-MSC prior to transplantation had significantly higher proportions of CD45+CD11b+ B220+ monocytes in the lungs 24 h after the second MSC injection and significantly higher proportions of CD4+ FoxP3+ regulatory T cells in the graft-draining lymph nodes at the average day of rejection of control animals. In in vitro experiments, third-party allo-MSC polarized primary lung-derived CD11b/c+ myeloid cells to a more anti-inflammatory phenotype, as determined by cytokine profile and conferred them with the capacity to suppress T cell activation via prostaglandin E2 and TGFß1. In experiments designed to further validate the clinical potential of the protocol, thawed cryopreserved, third-party allo-MSC were shown to be similarly potent at prolonging rejection-free corneal allograft survival as their freshly-cultured counterparts in the pre-sensitized high-risk model. Furthermore, thawed cryopreserved third-party allo-MSC could be co-administered with mycophenolate mofetil without adversely affecting their immunomodulatory function. In conclusion, a clinically-relevant protocol consisting of two intravenous infusions of third-party allo-MSC during the week prior to transplantation, exerts a potent anti-rejection effect in a pre-sensitized rat model of high-risk corneal allo-transplantation. This immune regulatory effect is likely to be mediated in the immediate post-transplant period through the promotion, by allo-MSC, of alternatively-activated macrophages in the lung and, later, by enhanced regulatory T-cell numbers.


Asunto(s)
Trasplante de Córnea , Rechazo de Injerto/prevención & control , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Aloinjertos , Animales , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Masculino , Ratas , Ratas Endogámicas Lew , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
11.
Front Immunol ; 8: 1626, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225601

RESUMEN

Mesenchymal stromal cells (MSC) have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous) MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed) and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy.

12.
Front Immunol ; 8: 1427, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163502

RESUMEN

Dendritic cellular therapies and dendritic cell vaccines show promise for the treatment of autoimmune diseases, the prolongation of graft survival in transplantation, and in educating the immune system to fight cancers. Cell surface glycosylation plays a crucial role in the cell-cell interaction, uptake of antigens, migration, and homing of DCs. Glycosylation is known to change with environment and the functional state of DCs. Tolerogenic DCs (tDCs) are commonly generated using corticosteroids including dexamethasone, however, to date, little is known on how corticosteroid treatment alters glycosylation and what functional consequences this may have. Here, we present a comprehensive profile of rat bone marrow-derived dendritic cells, examining their cell surface glycosylation profile before and after Dexa treatment as resolved by both lectin microarrays and lectin-coupled flow cytometry. We further examine the functional consequences of altering cell surface glycosylation on immunogenicity and tolerogenicity of DCs. Dexa treatment of rat DCs leads to profoundly reduced expression of markers of immunogenicity (MHC I/II, CD80, CD86) and pro-inflammatory molecules (IL-6, IL-12p40, inducible nitric oxide synthase) indicating a tolerogenic phenotype. Moreover, by comprehensive lectin microarray profiling and flow cytometry analysis, we show that sialic acid (Sia) is significantly upregulated on tDCs after Dexa treatment, and that this may play a vital role in the therapeutic attributes of these cells. Interestingly, removal of Sia by neuraminidase treatment increases the immunogenicity of immature DCs and also leads to increased expression of pro-inflammatory cytokines while tDCs are moderately protected from this increase in immunogenicity. These findings may have important implications in strategies aimed at increasing tolerogenicity where it is advantageous to reduce immune activation over prolonged periods. These findings are also relevant in therapeutic strategies aimed at increasing the immunogenicity of cells, for example, in the context of tumor specific immunotherapies.

13.
Stem Cell Res Ther ; 5(4): 99, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25158057

RESUMEN

Mesenchymal stem cells (MSCs) are an adult stromal cell population possessing potent differentiation capacity and a potential for use across major histocompatibility complex barriers. Although allogeneic MSCs have potent immunosuppressive properties, evidence also suggests that they elicit a weak allogeneic immune response. However, the effect of induced differentiation on the immunosuppressive ability and immunogenicity of allogeneic MSCs is a potential obstacle when applying MSCs in tissue replacement therapies. These concerns will be explored in this review, with particular emphasis on changes in the cell surface expression of immunogenic markers, changes in the secretion of immunosuppressive molecules and in vivo functional benefits of the cell therapy. We review the literature from a translational point of view, focusing on pre-clinical studies that have utilised and analysed the effects of allogeneic immune responses on the ability of allogeneic MSCs to regenerate damaged tissue in models of bone, heart and cartilage defects.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/inmunología , Regeneración Ósea , Cartílago/citología , Cartílago/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos , Rechazo de Injerto/inmunología , Corazón/fisiología , Inmunidad Celular , Inmunidad Humoral , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Miocardio/citología , Regeneración
14.
PLoS One ; 7(8): e42662, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22880073

RESUMEN

Adult mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad) could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells) neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.


Asunto(s)
Adenoviridae/genética , Inmunidad/inmunología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/virología , Transducción Genética , Animales , Diferenciación Celular/inmunología , Proliferación Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA