Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(4): 2287-2316, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30109819

RESUMEN

The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.


Asunto(s)
Sistema Inmunológico/fisiología , Sistema Nervioso/fisiopatología , Animales , Humanos , Inflamación/fisiopatología , Transducción de Señal/fisiología
2.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G176-G186, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084411

RESUMEN

Abdominal pain is a cardinal symptom of inflammatory bowel disease (IBD). Transient receptor potential (TRP) channels contribute to abdominal pain in preclinical models of IBD, and TRP melastatin 3 (TRPM3) has recently been implicated in inflammatory bladder and joint pain in rodents. We hypothesized that TRPM3 is involved in colonic sensation and is sensitized during colitis. We used immunohistochemistry, ratiometric Ca2+ imaging, and colonic afferent nerve recordings in mice to evaluate TRPM3 protein expression in colon-projecting dorsal root ganglion (DRG) neurons, as well as functional activity in DRG neurons and colonic afferent nerves. Colitis was induced using dextran sulfate sodium (DSS) in drinking water. TRPM3 protein expression was observed in 76% of colon-projecting DRG neurons and was often colocalized with calcitonin gene-related peptide. The magnitudes of intracellular Ca2+ transients in DRG neurons in response to the TRPM3 agonists CIM-0216 and pregnenolone sulfate sodium were significantly greater in neurons from mice with colitis compared with controls. In addition, the percentage of DRG neurons from mice with colitis that responded to CIM-0216 was significantly increased. CIM-0216 also increased the firing rate of colonic afferent nerves from control and mice with colitis. The TRPM3 inhibitor isosakuranetin inhibited the mechanosensitive response to distension of wide dynamic range afferent nerve units from mice with colitis but had no effect in control mice. Thus, TRPM3 contributes to colonic sensory transduction and may be a potential target for treating pain in IBD.NEW & NOTEWORTHY This is the first study to characterize TRPM3 protein expression and function in colon-projecting DRG neurons. A TRPM3 agonist excited DRG neurons and colonic afferent nerves from healthy mice. TRPM3 agonist responses in DRG neurons were elevated during colitis. Inhibiting TRPM3 reduced the firing of wide dynamic range afferent nerves from mice with colitis but had no effect in control mice.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Canales Catiónicos TRPM , Ratones , Animales , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas/metabolismo , Ganglios Espinales , Colon/inervación , Dolor Abdominal , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
3.
J Neurosci ; 42(33): 6313-6324, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35790401

RESUMEN

While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.


Asunto(s)
Dolor Abdominal , Agonistas de Receptores de Cannabinoides , Cannabinoides , Receptores Opioides , Dolor Abdominal/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Receptores Opioides/agonistas
4.
J Neurosci ; 42(16): 3316-3328, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35256532

RESUMEN

Opioid tolerance (OT) leads to dose escalation and serious side effects, including opioid-induced hyperalgesia (OIH). We sought to better understand the mechanisms underlying this event in the gastrointestinal tract. Chronic in vivo administration of morphine by intraperitoneal injection in male C57BL/6 mice evoked tolerance and evidence of OIH in an assay of colonic afferent nerve mechanosensitivity; this was inhibited by the δ-opioid receptor (DOPr) antagonist naltrindole when intraperitoneally injected in previous morphine administration. Patch-clamp studies of DRG neurons following overnight incubation with high concentrations of morphine, the µ-opioid receptors (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or the DOPr agonist [D-Ala2, D-Leu5]-Enkephalin evoked hyperexcitability. The pronociceptive actions of these opioids were blocked by the DOPr antagonist SDM25N but not the MOPr antagonist D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 The hyperexcitability induced by DAMGO was reversed after a 1 h washout, but reapplication of low concentrations of DAMGO or [D-Ala2, D-Leu5]-Enkephalin restored the hyperexcitability, an effect mediated by protein kinase C. DOPr-dependent DRG neuron hyperexcitability was blocked by the endocytosis inhibitor Pitstop 2, and the weakly internalizing DOPr agonist ARM390 did not cause hyperexcitability. Bioluminescence resonance energy transfer studies in HEK cells showed no evidence of switching of G-protein signaling from Gi to a Gs pathway in response to either high concentrations or overnight incubation of opioids. Thus, chronic high-dose opioid exposure leads to opioid tolerance and features of OIH in the colon. This action is mediated by DOPr signaling and is dependent on receptor endocytosis and downstream protein kinase C signaling.SIGNIFICANCE STATEMENT Opioids are effective in the treatment of abdominal pain, but escalating doses can lead to opioid tolerance and potentially opioid-induced hyperalgesia. We found that δ-opioid receptor (DOPr) plays a central role in the development of opioid tolerance and opioid-induced hyperalgesia in colonic afferent nociceptors following prolonged exposure to high concentrations of MOPr or DOPr agonists. Furthermore, the role of DOPr was dependent on OPr internalization and activation of a protein kinase C signaling pathway. Thus, targeting DOPr or key components of the downstream signaling pathway could mitigate adverse side effects by opioids.


Asunto(s)
Analgésicos Opioides , Morfina , Analgésicos Opioides/efectos adversos , Animales , Tolerancia a Medicamentos , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalina Ala(2)-MeFe(4)-Gli(5)/uso terapéutico , Tracto Gastrointestinal , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/farmacología , Morfina/uso terapéutico , Antagonistas de Narcóticos/farmacología , Proteína Quinasa C , Receptores Opioides , Receptores Opioides mu , Transducción de Señal
5.
Cell Tissue Res ; 392(3): 659-670, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004577

RESUMEN

The gut-brain axis has received increasing attention recently due to evidence that colonic microbes can affect brain function and behavior. However, little is known about the innervation of the colon by a major component of the gut-brain axis, vagal afferent neurons. Furthermore, it is currently unknown whether individual NG neurons or DRG neurons innervate both the proximal and distal colon. We aimed to quantify the number of vagal and spinal afferent neurons that innervate the colon; and determine whether these individual neurons simultaneously innervate the mouse proximal and distal colon. C57Bl/6 mice received injections of a combination of retrograde tracers that were either injected into the muscularis externa of the proximal or the distal colon: fast blue, DiI and DiO. Five to seven percent of lumbosacral and thoracolumbar spinal afferent neurons, and 25% of vagal afferent neurons were labelled by injections of DiI and DiO into the colon. We also found that approximately 8% of NG neurons innervate the distal colon. Ten percent of labeled thoracolumbar and 15% of labeled lumbosacral DRG neurons innervate both the distal and proximal colon. Eighteen percent of labeled NG neurons innervated both the distal and proximal colon. In conclusion, vagal afferent innervation of the distal colon is less extensive than the proximal colon, whereas a similar gradient was not observed for the spinal afferent innervation. Furthermore, overlap appears to exist between the receptive fields of vagal and spinal afferent neurons that innervate the proximal and distal colon.


Asunto(s)
Neuronas Aferentes , Neuronas , Ratones , Animales , Colon/inervación
6.
Proc Natl Acad Sci U S A ; 117(26): 15281-15292, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546520

RESUMEN

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/o and ß-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


Asunto(s)
Leucina Encefalina-2-Alanina/farmacología , Inflamación/complicaciones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Receptores Opioides delta/agonistas , Animales , Colon/inervación , Leucina Encefalina-2-Alanina/administración & dosificación , Células HEK293 , Humanos , Ratones , Nanopartículas/administración & dosificación , Neuronas , Nociceptores/metabolismo , Receptores Opioides delta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
Gut ; 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36591617

RESUMEN

OBJECTIVE: Dietary therapies for irritable bowel syndrome (IBS) have received increasing interest but predicting which patients will benefit remains a challenge due to a lack of mechanistic insight. We recently found evidence of a role for the microbiota in dietary modulation of pain signalling in a humanised mouse model of IBS. This randomised cross-over study aimed to test the hypothesis that pain relief following reduced consumption of fermentable carbohydrates is the result of changes in luminal neuroactive metabolites. DESIGN: IBS (Rome IV) participants underwent four trial periods: two non-intervention periods, followed by a diet low (LFD) and high in fermentable carbohydrates for 3 weeks each. At the end of each period, participants completed questionnaires and provided stool. The effects of faecal supernatants (FS) collected before (IBS FS) and after a LFD (LFD FS) on nociceptive afferent neurons were assessed in mice using patch-clamp and ex vivo colonic afferent nerve recording techniques. RESULTS: Total IBS symptom severity score and abdominal pain were reduced by the LFD (N=25; p<0.01). Excitability of neurons was increased in response to IBS FS, but this effect was reduced (p<0.01) with LFD FS from pain-responders. IBS FS from pain-responders increased mechanosensitivity of nociceptive afferent nerve axons (p<0.001), an effect lost following LFD FS administration (p=NS) or when IBS FS was administered in the presence of antagonists of histamine receptors or protease inhibitors. CONCLUSIONS: In a subset of IBS patients with improvement in abdominal pain following a LFD, there is a decrease in pronociceptive signalling from FS, suggesting that changes in luminal mediators may contribute to symptom response.

8.
J Physiol ; 598(11): 2137-2151, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32134496

RESUMEN

KEY POINTS: The vagus nerve has been implicated in mediating behavioural effects of the gut microbiota on the central nervous system. This study examined whether the secretory products of commensal gut bacteria can modulate the excitability of vagal afferent neurons with cell bodies in nodose ganglia. Cysteine proteases from commensal bacteria increased the excitability of vagal afferent neurons via activation of protease-activated receptor 2 and modulation of the voltage dependence of Na+ conductance activation. Lipopolysaccharide, a component of the cell wall of gram-negative bacteria, increased the excitability of nodose ganglia neurons via TLR4-dependent activation of nuclear factor kappa B. Our study identified potential mechanisms by which gut microbiota influences the activity of vagal afferent pathways, which may in turn impact on autonomic reflexes and behaviour. ABSTRACT: Behavioural studies have implicated vagal afferent neurons as an important component of the microbiota-gut-brain axis. However, the mechanisms underlying the ability of the gut microbiota to affect vagal afferent pathways are unclear. We examined the effect of supernatant from a community of 33 commensal gastrointestinal bacterial derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) on the excitability of mouse vagal afferent neurons. Perforated patch clamp electrophysiology was used to measure the excitability of dissociated nodose ganglion (NG) neurons. NG neuronal excitability was assayed by measuring the amount of current required to elicit an action potential, the rheobase. MET-1 supernatant increased the excitability of NG neurons by hyperpolarizing the voltage dependence of activation of Na+ conductance. The increase in excitability elicited by MET-1 supernatant was blocked by the cysteine protease inhibitor E-64 (30 nm). The protease activated receptor-2 (PAR2 ) antagonist (GB 83, 10 µm) also blocked the effect of MET-1 supernatant on NG neurons. Supernatant from Lactobacillus paracasei 6MRS, a component of MET-1, recapitulated the effect of MET-1 supernatant on NG neurons. Lastly, we compared the effects of MET-1 supernatant and lipopolysaccharide (LPS) from Escherichia coli 05:B5 on NG neuron excitability. LPS increased the excitability of NG neurons in a toll-like receptor 4 (TLR4 )-dependent and PAR2 -independent manner, whereas the excitatory effects of MET-1 supernatant were independent of TLR4 activation. Together, our findings suggest that cysteine proteases from commensal bacteria increase the excitability of vagal afferent neurons by the activation of PAR2 .


Asunto(s)
Microbioma Gastrointestinal , Ganglio Nudoso , Animales , Bacterias , Ecosistema , Ratones , Neuronas , Neuronas Aferentes , Péptido Hidrolasas , Nervio Vago
9.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G363-G372, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290688

RESUMEN

The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterized impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells, and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short-chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short-chain fatty acids have pronociceptive effects in rodents but may be antinociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators, including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.


Asunto(s)
Colon/microbiología , Ganglios Espinales/microbiología , Microbioma Gastrointestinal/fisiología , Microbiota , Dolor Visceral/microbiología , Animales , Colon/fisiología , Ganglios Espinales/fisiología , Humanos , Microbiota/fisiología , Neuronas Aferentes/microbiología , Dolor Visceral/terapia
10.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G275-G284, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216174

RESUMEN

Increased bile acids in the colon can evoke increased epithelial secretion resulting in diarrhea, but little is known about whether colonic bile acids contribute to abdominal pain. This study aimed to investigate the mechanisms underlying activation of colonic extrinsic afferent nerves and their neuronal cell bodies by a major secondary bile acid, deoxycholic acid (DCA). All experiments were performed on male C57BL/6 mice. Afferent sensitivity was evaluated using in vitro extracellular recordings from mesenteric nerves in the proximal colon (innervated by vagal and spinal afferents) and distal colon (spinal afferents only). Neuronal excitability of cultured dorsal root ganglion (DRG) and nodose ganglion (NG) neurons was examined with perforated patch clamp. Colonic 5-HT release was assessed using ELISA, and 5-HT immunoreactive enterochromaffin (EC) cells were quantified. Intraluminal DCA increased afferent nerve firing rate concentration dependently in both proximal and distal colon. This DCA-elicited increase was significantly inhibited by a 5-HT3 antagonist in the proximal colon but not in the distal colon, which may be in part due to lower 5-HT immunoreactive EC cell density and lower 5-HT levels in the distal colon following DCA stimulation. DCA increased the excitability of DRG neurons, whereas it decreased the excitability of NG neurons. DCA potentiated mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. Together, this study suggests that DCA can excite colonic afferents via direct and indirect mechanisms but the predominant mechanism may differ between vagal and spinal afferents. Furthermore, DCA increased mechanosensitivity of high-threshold spinal afferents and may be a mechanism of visceral hypersensitivity.NEW & NOTEWORTHY Deoxycholic acid (DCA) directly excites spinal afferents and, to a lesser extent, indirectly via mucosal 5-HT release. DCA potentiates mechanosensitivity of high-threshold spinal afferents independent of 5-HT release. DCA increases vagal afferent firing in proximal colon via 5-HT release but directly inhibits the excitability of their cell bodies.


Asunto(s)
Vías Aferentes/efectos de los fármacos , Colon/efectos de los fármacos , Ácido Desoxicólico/farmacología , Receptores de Serotonina 5-HT3/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas Aferentes/fisiología , Ganglio Nudoso/efectos de los fármacos , Sistema Nervioso Periférico/efectos de los fármacos , Serotonina/metabolismo
11.
J Neurosci ; 37(48): 11758-11768, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29089436

RESUMEN

Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 µm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K+ currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain.SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human donor signal to DRG neurons. Their secretory products contain serine proteases that suppress excitability via activation of protease-activated receptor-4. Moreover, from this community of commensal microbes, Faecalibacterium prausnitzii strain 16-6-I 40 fastidious anaerobe agar had the greatest effect. Our study suggests that therapies that induce or correct microbial dysbiosis may affect the excitability of primary afferent neurons, many of which are nociceptive. Furthermore, identification of the bacterial strains capable of suppressing sensory neuron excitability, and their mechanisms of action, may allow therapeutic relief for patients with gastrointestinal diseases associated with pain.


Asunto(s)
Ganglios Espinales/enzimología , Microbioma Gastrointestinal/fisiología , Granzimas/administración & dosificación , Neuronas/enzimología , Simbiosis/fisiología , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/microbiología , Péptido Hidrolasas/administración & dosificación , Simbiosis/efectos de los fármacos
12.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G592-G601, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29746171

RESUMEN

We have previously demonstrated that satiety sensing vagal afferent neurons are less responsive to meal-related stimuli in obesity because of reduced electrical excitability. As leak K+ currents are key determinants of membrane excitability, we hypothesized that leak K+ currents are increased in vagal afferents during obesity. Diet-induced obesity was induced by feeding C57Bl/6J mice a high-fat diet (HFF) (60% energy from fat) for 8-10 wk. In vitro extracellular recordings were performed on jejunal afferent nerves. Whole cell patch-clamp recordings were performed on mouse nodose ganglion neurons. Leak K+ currents were isolated using ion substitution and pharmacological blockers. mRNA for TWIK-related acid-sensitive K+ (TASK) subunits was measured using quantitative real-time PCR. Intestinal afferent responses to nutrient (oleate) and non-nutrient (ATP) stimuli were significantly decreased in HFF mice. Voltage clamp experiments revealed the presence of a voltage-insensitive resting potassium conductance that was increased by external alkaline pH and halothane, known properties of TASK currents. In HFF neurons, leak K+ current was approximately doubled and was reduced by TASK1 and TASK3 inhibitors. The halothane sensitive current was similarly increased. Quantitative PCR revealed the presence of mRNA encoding TASK1 (KCNK3) and TASK3 (KCNK9) channels in nodose neurons. TASK3 transcript was significantly increased in HFF mice. The reduction in vagal afferent excitability in obesity is due in part to an increase of resting (leak) K+ conductance. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a therapeutic target for obesity treatment. NEW & NOTEWORTHY This study characterized the electrophysiological properties and gene expression of the TWIK-related acid-sensitive K+ (TASK) channel in vagal afferent neurons. TASK conductance was increased and contributed to decreased excitability in diet-induced obesity. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a promising therapeutic target.


Asunto(s)
Potenciales de Acción , Neuronas Aferentes/metabolismo , Obesidad/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Nervio Vago/metabolismo , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/fisiología , Obesidad/etiología , Obesidad/fisiopatología , Nervio Vago/fisiología
13.
Gastroenterology ; 152(6): 1407-1418, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28115057

RESUMEN

BACKGROUND & AIMS: Cell therapy offers the potential to treat gastrointestinal motility disorders caused by diseased or absent enteric neurons. We examined whether neurons generated from transplanted enteric neural cells provide a functional innervation of bowel smooth muscle in mice. METHODS: Enteric neural cells expressing the light-sensitive ion channel, channelrhodopsin, were isolated from the fetal or postnatal mouse bowel and transplanted into the distal colon of 3- to 4-week-old wild-type recipient mice. Intracellular electrophysiological recordings of responses to light stimulation of the transplanted cells were made from colonic smooth muscle cells in recipient mice. Electrical stimulation of endogenous enteric neurons was used as a control. RESULTS: The axons of graft-derived neurons formed a plexus in the circular muscle layer. Selective stimulation of graft-derived cells by light resulted in excitatory and inhibitory junction potentials, the electrical events underlying contraction and relaxation, respectively, in colonic muscle cells. Graft-derived excitatory and inhibitory motor neurons released the same neurotransmitters as endogenous motor neurons-acetylcholine and a combination of adenosine triphosphate and nitric oxide, respectively. Graft-derived neurons also included interneurons that provided synaptic inputs to motor neurons, but the pharmacologic properties of interneurons varied with the age of the donors from which enteric neural cells were obtained. CONCLUSIONS: Enteric neural cells transplanted into the bowel give rise to multiple functional types of neurons that integrate and provide a functional innervation of the smooth muscle of the bowel wall. Circuits composed of both motor neurons and interneurons were established, but the age at which cells are isolated influences the neurotransmitter phenotype of interneurons that are generated.


Asunto(s)
Colon/inervación , Músculo Liso/inervación , Neuronas/fisiología , Neuronas/trasplante , Potenciales Sinápticos , Acetilcolina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Axones/fisiología , Tratamiento Basado en Trasplante de Células y Tejidos , Channelrhodopsins , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Sistema Nervioso Entérico/fisiología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/fisiología , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Optogenética , Estimulación Luminosa
14.
Semin Immunol ; 26(5): 402-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24486057

RESUMEN

The sympathetic nervous system (SNS) is part of an integrative network that functions to restore homeostasis following injury and infection. The SNS can provide negative feedback control over inflammation through the secretion of catecholamines from postganglionic sympathetic neurons and adrenal chromaffin cells (ACCs). Central autonomic structures receive information regarding the inflammatory status of the body and reflexively modulate SNS activity. However, inflammation and infection can also directly regulate SNS function by peripheral actions on postganglionic cells. The present review discusses how inflammation activates autonomic reflex pathways and compares the effect of localized and systemic inflammation on ACCs and postganglionic sympathetic neurons. Systemic inflammation significantly enhanced catecholamine secretion through an increase in Ca(2+) release from the endoplasmic reticulum. In contrast, acute and chronic GI inflammation reduced voltage-gated Ca(2+) current. Thus it appears that the mechanisms underlying the effects of peripheral and systemic inflammation neuroendocrine function converge on the modulation of intracellular Ca(2+) signaling.


Asunto(s)
Calcio/metabolismo , Catecolaminas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Neuronas/metabolismo , Sepsis/metabolismo , Sistema Nervioso Simpático/metabolismo , Animales , Calcio/inmunología , Señalización del Calcio , Catecolaminas/inmunología , Células Cromafines/inmunología , Células Cromafines/metabolismo , Células Cromafines/patología , Citocinas/genética , Citocinas/inmunología , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Neuronas/inmunología , Neuronas/patología , Sepsis/genética , Sepsis/inmunología , Sepsis/patología , Sistema Nervioso Simpático/inmunología , Sistema Nervioso Simpático/patología
15.
Gut ; 66(12): 2121-2131, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27590998

RESUMEN

AIMS AND BACKGROUND: Psychological stress accompanies chronic inflammatory diseases such as IBD, and stress hormones can exacerbate pain signalling. In contrast, the endogenous opioid system has an important analgesic action during chronic inflammation. This study examined the interaction of these pathways. METHODS: Mouse nociceptive dorsal root ganglia (DRG) neurons were incubated with supernatants from segments of inflamed colon collected from patients with chronic UC and mice with dextran sodium sulfate (cDSS)-induced chronic colitis. Stress effects were studied by adding stress hormones (epinephrine and corticosterone) to dissociated neurons or by exposing cDSS mice to water avoidance stress. Changes in excitability of colonic DRG nociceptors were measured using patch clamp and Ca2+ imaging techniques. RESULTS: Supernatants from patients with chronic UC and from colons of mice with chronic colitis caused a naloxone-sensitive inhibition of neuronal excitability and capsaicin-evoked Ca2+ responses. Stress hormones decreased signalling induced by human and mouse supernatants. This effect resulted from stress hormones signalling directly to DRG neurons and indirectly through signalling to the immune system, leading to decreased opioid levels and increased acute inflammation. The net effect of stress was a change endogenous opioid signalling in DRG neurons from an inhibitory to an excitatory effect. This switch was associated with a change in G protein-coupled receptor excitatory signalling to a pathway sensitive to inhibitors of protein kinase A-protein, phospholipase C-protein and G protein ßϒ subunits. CONCLUSIONS: Stress hormones block the inhibitory actions of endogenous opioids and can change the effect of opioid signalling in DRG neurons to excitation. Targeting these pathways may prevent heavy opioid use in IBD.


Asunto(s)
Colitis/metabolismo , Colon/inervación , Ganglios Espinales/metabolismo , Estrés Psicológico/fisiopatología , betaendorfina/metabolismo , Adulto , Anciano , Animales , Biopsia , Enfermedad Crónica , Colitis/inmunología , Citocinas/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Naloxona/farmacología , Nociceptores/fisiología , Técnicas de Placa-Clamp , Transducción de Señal
16.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G165-G170, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082285

RESUMEN

Altered gastrointestinal (GI) function contributes to the debilitating symptoms of inflammatory bowel diseases (IBD). Nerve circuits contained within the gut wall and outside of the gut play important roles in modulating motility, mucosal fluid transport, and blood flow. The structure and function of these neuronal populations change during IBD. Superimposed on this plasticity is a diminished responsiveness of effector cells - smooth muscle cells, enterocytes, and vascular endothelial cells - to neurotransmitters. The net result is a breakdown in the precisely orchestrated coordination of motility, fluid secretion, and GI blood flow required for health. In this review, we consider how inflammation-induced changes to the effector innervation of these tissues, and changes to the tissues themselves, contribute to defective GI function in models of IBD. We also explore the evidence that reversing neuronal plasticity is sufficient to normalize function during IBD.


Asunto(s)
Sistema Nervioso Entérico/fisiopatología , Enfermedades Inflamatorias del Intestino/fisiopatología , Intestinos/fisiopatología , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos , Neuronas/fisiología
17.
Adv Exp Med Biol ; 891: 201-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379647

RESUMEN

Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.


Asunto(s)
Dieta , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/inervación , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales
18.
Dev Biol ; 382(1): 365-74, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23261929

RESUMEN

The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.


Asunto(s)
Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Animales , Fenómenos Electrofisiológicos , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Humanos , Neurotransmisores/metabolismo , Sinapsis/metabolismo
19.
Cell Tissue Res ; 356(2): 309-17, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24715114

RESUMEN

Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.


Asunto(s)
Colitis/patología , Ganglios Espinales/patología , Intestinos/patología , Plasticidad Neuronal , Células del Asta Posterior/inmunología , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Inflamación/inmunología , Inflamación/patología , Intestinos/inmunología , Región Lumbosacra/inervación , Masculino , Ratones , Dolor , Células del Asta Posterior/patología , Sustancia P/inmunología
20.
Brain Behav Immun ; 41: 1-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24642072

RESUMEN

Inflammation involving the helper T cell 17 (Th17) subset of lymphocytes has been implicated in a number of diseases that affect the nervous system. As the canonical cytokine of Th17 cells, interleukin 17A (IL-17A) is thought to contribute to these neuroimmune interactions. The main receptor for IL-17A is expressed in many neural tissues. IL-17A has direct effects on neurons but can also impact neural function via signaling to satellite cells and immune cells. In the central nervous system, IL-17A has been associated with neuropathology in multiple sclerosis, epilepsy syndromes and ischemic brain injury. Effects of IL-17A at the level of dorsal root ganglia and the spinal cord may contribute to enhanced nociception during neuropathic and inflammatory pain. Finally, IL-17A plays a role in sympathetic axon growth and regeneration of damaged axons that innervate the cornea. Given the widespread effects of IL-17A on neural tissues, it will be important to determine whether selectively mitigating the damaging effects of this cytokine while augmenting its beneficial effects is a possible strategy to treat inflammatory damage to the nervous system.


Asunto(s)
Interleucina-17/fisiología , Neuroinmunomodulación/fisiología , Células Th17/inmunología , Animales , Artritis Reumatoide/inmunología , Artritis Reumatoide/fisiopatología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/fisiopatología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/fisiología , Modelos Animales de Enfermedad , Epilepsia/inmunología , Epilepsia/fisiopatología , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Humanos , Inflamación/inmunología , Inflamación/fisiopatología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ratones , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/metabolismo , Neuralgia/inmunología , Neuralgia/fisiopatología , Neuroglía/metabolismo , Neuronas/metabolismo , Percepción del Dolor/fisiología , Ratas , Receptores de Interleucina-17/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA