Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(5): 1095-1107, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26553503

RESUMEN

We screened a panel of mouse and human monoclonal antibodies (MAbs) against chikungunya virus and identified several with inhibitory activity against multiple alphaviruses. Passive transfer of broadly neutralizing MAbs protected mice against infection by chikungunya, Mayaro, and O'nyong'nyong alphaviruses. Using alanine-scanning mutagenesis, loss-of-function recombinant proteins and viruses, and multiple functional assays, we determined that broadly neutralizing MAbs block multiple steps in the viral lifecycle, including entry and egress, and bind to a conserved epitope on the B domain of the E2 glycoprotein. A 16 Å resolution cryo-electron microscopy structure of a Fab fragment bound to CHIKV E2 B domain provided an explanation for its neutralizing activity. Binding to the B domain was associated with repositioning of the A domain of E2 that enabled cross-linking of neighboring spikes. Our results suggest that B domain antigenic determinants could be targeted for vaccine or antibody therapeutic development against multiple alphaviruses of global concern.


Asunto(s)
Infecciones por Alphavirus/inmunología , Alphavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos , Proteínas del Envoltorio Viral/inmunología , Alphavirus/clasificación , Alphavirus/metabolismo , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/terapia , Secuencia de Aminoácidos , Animales , Virus Chikungunya/química , Virus Chikungunya/inmunología , Microscopía por Crioelectrón , Glicoproteínas/química , Glicoproteínas/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas del Envoltorio Viral/química , Vacunas Virales/inmunología , Internalización del Virus
2.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426999

RESUMEN

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Proteínas de la Nucleocápside , Viremia , Beclina-1 , Rhabdoviridae/fisiología , Lisosomas , Autofagia
3.
J Virol ; 97(7): e0053223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367226

RESUMEN

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Asunto(s)
Enfermedades de los Peces , Factores Reguladores del Interferón , Proteínas Quinasas Activadas por Mitógenos , Infecciones por Rhabdoviridae , Ubiquitinación , Proteínas Estructurales Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Estructurales Virales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación hacia Arriba
4.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
5.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727817

RESUMEN

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Asunto(s)
Carpas , Enfermedades de los Peces , Herpesviridae , Animales , Antivirales/farmacología , Autofagia , Femenino , Inmunidad Innata/genética , Masculino , Mamíferos , Pez Cebra/genética
6.
Cancer Cell Int ; 24(1): 236, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970092

RESUMEN

Chemotherapy is currently one of the most effective methods in clinical cancer treatment. However, chemotherapy resistance is an important reason for poor chemotherapy efficacy and prognosis, which has become an urgent problem to be solved in the field of cancer chemotherapy. Therefore, it is very important to deeply study and analyze the mechanism of cancer chemotherapy resistance and its regulatory factors. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (LncRNA NEAT1) has been shown to be closely associated with chemotherapy resistance in cancer. NEAT1 induces cancer cell resistance to chemotherapeutic drugs by regulating cell apoptosis, cell cycle, drug transport and metabolism, DNA damage repair, EMT, autophagy, cancer stem cell characteristics, and metabolic reprogramming. This indicates that NEAT1 may be an important target to overcome chemotherapy resistance and is expected to be a potential biomarker to predict the effect of chemotherapy. This article summarizes the expression characteristics and clinical characteristics of NEAT1 in different cancers, and deeply discusses the regulatory role of NEAT1 in cancer chemotherapy resistance and related molecular mechanisms, aiming to clarify NEAT1 as a new target to overcome cancer chemotherapy resistance and the feasibility of chemotherapy sensitizers, with a view to providing a potential therapeutic direction for overcoming the dilemma of cancer resistance in the future.

7.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35418468

RESUMEN

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Animales , Virus ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Rhabdoviridae , Ubiquitinación , Proteínas Virales , Viremia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
8.
Cell Biochem Funct ; 42(2): e3961, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38425124

RESUMEN

A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/metabolismo
9.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600488

RESUMEN

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Rhabdoviridae/virología , Proteínas de Pez Cebra/metabolismo , Animales , Hígado/inmunología , Hígado/virología , Proteínas de la Membrana/genética , Fosforilación , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Ubiquitinación , Pez Cebra , Proteínas de Pez Cebra/genética
10.
J Med Virol ; 95(1): e28190, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36180404

RESUMEN

Developing reliable, rapid, and quantitative point-of-care testing (POCT) technology of SARS-CoV-2-specific antibodies and understanding longitudinal vaccination response kinetics are highly required to restrain the ongoing coronavirus disease 2019 (COVID-19) pandemic. We demonstrate a novel portable, sensitive, and rapid chemiluminescent lab-on-fiber detection platform for detection of anti-SARS-CoV-2 antibodies: the chemiluminescent lab-on-fiber immunosensor (c-LOFI). Using SARS-CoV-2 Spike S1 RBD protein functionalized fiber bio-probe, the c-LOFI can detect anti-SARS-CoV-2 immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies with high sensitivity based on their respective horseradish peroxidase-labeled secondary antibodies. The limits of detection of anti-SARS-CoV-2 IgG and IgM antibodies were 0.6 and 0.3 ng/ml, respectively. The c-LOFI was successfully applied for direct detection of anti-SARS-CoV-2 antibodies in whole blood samples with simple dilution, which can serve as a finger prick test to rapidly detect antibodies. Furthermore, the longitudinal immune response (>12 months) kinetics following three-dose inactivated virus vaccines was evaluated based on anti-SARS-CoV-2 IgG detection results, which can provide important significance for understanding the immune mechanism against COVID-19 and identify individuals who may benefit from the vaccination and booster vaccination. The c-LOFI has great potential to become a sensitive, low-cost, rapid, high-frequency POCT tool for the detection of both SARS-CoV-2-specific antibodies and other biomarkers.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/prevención & control , Inmunoensayo , SARS-CoV-2 , Anticuerpos Antivirales , Pruebas en el Punto de Atención , Vacunación , Inmunoglobulina M , Inmunidad , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus
11.
Histopathology ; 82(2): 285-295, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36200756

RESUMEN

AIMS: Although the morphological assessment of melanoma is generally straightforward, diagnosis can be especially difficult when the significant morphological and immunohistochemical results overlap with those of benign and malignant melanocytic tumours and histological mimics. This study assessed the potential diagnostic utility of measuring PReferentially expressed Antigen in MElanoma (PRAME) immunohistochemically in naevi, melanomas and clear cell sarcomas (CCSs) in Chinese patients. METHODS: We examined the immunohistochemical expression of PRAME in 317 melanocytic naevi, 178 primary melanomas, 72 metastatic melanomas and 19 CCSs and compared the sensitivity and specificity of PRAME immunohistochemistry (IHC) in the differential diagnosis of melanocytic tumours and histological mimics. RESULTS: Of the 317 melanocytic naevi, 98.1%were completely negative for PRAME; six cases showed focal PRAME immunoreactivity in a minor population of lesional melanocytes. Diffuse nuclear immunoreactivity for PRAME was found in 89.9% of primary melanomas and 93.1% of metastatic melanomas. Regarding melanoma subtypes, PRAME was expressed in 100% of superficial spreading melanomas, 100% of melanomas arise in congenital naevus, 91.4% of nodular melanomas, 87.8% of acral lentigo melanomas, 80.0% of lentigo malignant melanomas, 60.0% of Spitz melanomas, 96.2% of mucosal melanomas and 80.0% of uveal melanomas. None of the two desmoplastic melanomas expressed PRAME. Of the 19 CCS cases, 89.5% were negative for PRAME and 10.5% showed focal weak PRAME immunoreactivity in a minor population of tumour cells. CONCLUSIONS: Our findings indicate that PRAME may be a useful marker to support a suspected diagnosis of melanoma. In addition, lack of PRAME expression is a valuable hint to CCS in a suspected case, and then molecular confirmation of the presence of EWSR1 rearrangement is necessary.


Asunto(s)
Melanoma , Humanos , Diagnóstico Diferencial , Melanoma/diagnóstico , Antígenos de Neoplasias
12.
Analyst ; 148(23): 6120-6129, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37929744

RESUMEN

The overuse and abuse of antibiotics have led to increased pollution in water environments. Thus, it is crucial to develop a rapid, high-frequency, and cost-effective method for on-site detection of antibiotics. In this regard, a reusable fiber-embedded microfluidic chip was constructed by combining a microfluidic chip with a functionalized fiber bioprobe that served as both a biorecognition element and an optical transducer. The fiber-embedded microfluidic chip enabled the quantitative detection of kanamycin (KANA) by integrating a portable all-fiber evanescent wave fluorescence detection device. Under optimized conditions, quantitative KANA detection was achieved with a detection limit of 0.03 µg L-1 and a linear detection range of 0.21-10.3 µg L-1. The accurate detection of KANA in various water samples can be completed within 25 min without pretreatment. The functionalized fiber-embedded microfluidic chip could be reused more than 200 times without significant performance loss. To demonstrate its suitability for practical applications, the fiber-embedded microfluidic chip was used to investigate KANA residues in surface waters obtained from the Qinghe River in Beijing, China. The results were compared with those of a traditional enzyme-linked immunosorbent assay, which showed a high correlation. Compared to conventional optical microfluidic chips, the proposed fiber-embedded microfluidic chip has several advantages, including its ease of use, miniaturization, cost-effectiveness, reusability, and high flexibility. It is an ideal alternative for rapid, sensitive on-site detection of antibiotics and other trace substances in environmental, food, and medical fields.


Asunto(s)
Kanamicina , Microfluídica , Antibacterianos , Contaminación Ambiental , Agua
13.
Virus Genes ; 59(1): 91-99, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36258144

RESUMEN

A multiplex qPCR assay was developed to simultaneously detect duck circovirus (DuCV), duck Tembusu virus (DTMUV), Muscovy duck reovirus (MDRV), and novel duck reovirus (NDRV), but it did not amplify other viruses, including duck virus enteritis (DVE), infectious bursal disease virus (IBDV), avian reovirus (ARV), H5 avian influenza virus (H5 AIV), H7 avian influenza virus (H7 AIV), H9 avian influenza virus (H9 AIV), Newcastle disease virus (NDV), and Muscovy duck parvovirus (MDPV), and the detection limit for DuCV, DTMUV, MDRV, and NDRV was 1.51 × 101 copies/µL. The intra- and interassay coefficients of variation were less than 1.54% in the repeatability test with standard plasmid concentrations of 1.51 × 107, 1.51 × 105, and 1.51 × 103 copies/µL. The developed multiple qPCR assay was used to examine 404 clinical samples to verify its practicability. The positivity rates for DuCV, DTMUV, MDRV, and NDRV were 26.0%, 9.9%, 4.0%, and 4.7%, respectively, and the mixed infection rates for DuCV + DTMUV, DuCV + MDRV, DuCV + NDRV, MDRV + NDRV, DTMUV + MDRV, and DTMUV + NDRV were 2.7%, 1.2%, 1.2%, 1.0%, 0.5%, and 0.7%, respectively.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Orthoreovirus , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/diagnóstico
14.
BMC Infect Dis ; 23(1): 698, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853317

RESUMEN

INTRODUCTION: The SARS-CoV-2 Omicron variant has decreased virulence and pathogenicity, yet the number of Omicron infections worldwide is unprecedentedly high, with rather high mortality and severe disease rate. Chronic kidney disease (CKD) patients are particularly vulnerable to the SARS-CoV-2 Omicron variant and have unique clinical outcomes. METHODS: We retrospectively collected data from 2140 hospitalized patients with SARS-CoV-2 Omicron variant infection from March 29, 2022, to May 17, 2022. Demographic characteristics, ancillary examination results, and clinical treatments were described. Occurrence of critical COVID-19 or death and time of positive-to-negative conversion was defined as primary outcomes. The presence of COVID-19 pneumonia and the usage of respiratory or circulatory support was defined as secondary outcomes. Univariate or multivariate logistic regression analyses were performed to identify risk factors for primary outcomes. RESULTS: 15.74% of CKD patients infected with the SARS-CoV-2 Omicron variant ended up with critical COVID-19 or death. Pre-existing CKD was a risk factor for critical COVID-19 or death and prolonged time of positive-to-negative conversion of SARS-CoV-2. Nirmatrelvir-ritonavir facilitated viral clearance among COVID-19 patients with non-severe CKD. CONCLUSION: We found patients with CKD and COVID-19 due to Omicron experienced worse clinical outcomes and prolonged time of positive-to-negative conversion of SARS-CoV-2 compared to patients without CKD, which helps rationalize limited medical resources and offers guidance for appropriate clinical treatments.


Asunto(s)
COVID-19 , Insuficiencia Renal Crónica , Humanos , SARS-CoV-2 , Estudios Retrospectivos , Factores de Riesgo , Hospitales , Insuficiencia Renal Crónica/complicaciones
15.
J Immunol ; 207(3): 784-798, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290106

RESUMEN

In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.


Asunto(s)
Proteínas de Peces/genética , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética , Infecciones por Rhabdoviridae/inmunología , Rhabdoviridae/fisiología , Animales , Carpas , Cyprinidae , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Carpa Dorada , Células HEK293 , Humanos , Inmunidad Innata/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas de Pez Cebra/genética
16.
J Immunol ; 207(2): 512-522, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193603

RESUMEN

Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Ubiquitinación/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Antivirales/metabolismo , Línea Celular , Células HEK293 , Humanos , Unión Proteica/fisiología , Proteolisis , Transducción de Señal/fisiología , Ubiquitina/inmunología
17.
Exp Cell Res ; 420(2): 113353, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36100071

RESUMEN

N6-methyladenosine (m6A) is the most abundant and well-studied internal modification of messenger RNAs (mRNAs). Although m6A mRNA modification has been frequently observed in osteosarcoma, the roles and underlying mechanisms of m6A modification are not yet fully elucidated. In this study, an m6A regulator, METTL3, showed to be dramatically up-regulated within osteosarcoma tissues and cells than non-cancerous healthy samples and human normal osteoblasts, respectively. In vitro, knockdown of METTL3 suppressed the viability of osteosarcomas, and their abilities to migrate and invade; in vivo, knockdown of METTL3 repressed tumor growth within xenotransplant tumor model. METTL3 upregulates COPS5 expression may be through promoting COPS5 methylation to stabilize COPS5 mRNA. The expression level of COPS5 also showed to be up-regulated within osteosarcoma tissue samples and cells. COPS5 knockdown caused no changes in METTL3 effects on METTL3 expression but partially eliminated METTL3 effects on COPS5 expression. METTL3 overexpression promoted, whereas COPS5 knockdown inhibited the malignant behaviors of osteosarcoma cells; COPS5 knockdown partially eliminated the effects of METTL3 overexpression on osteosarcoma cells. Conclusively, METTL3 and COPS5 serve as oncogenic regulators in osteosarcoma. METTL3 upregulates COPS5 expression in osteosarcoma in an m6A-related manner.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/genética , Complejo del Señalosoma COP9/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilación , Metiltransferasas/metabolismo , Osteosarcoma/genética , Osteosarcoma/metabolismo , Péptido Hidrolasas/metabolismo , ARN Mensajero/genética
18.
World J Surg Oncol ; 21(1): 234, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525160

RESUMEN

BACKGROUND: Allograft reconstruction following the resection of malignant bone tumors is associated with high rates of complications and failures. This study aimed to evaluate the efficacy and current problems of allograft reconstruction techniques to optimize treatment strategies at our center. MATERIALS AND METHODS: Thirty-eight cases (16 men and 22 women), who were diagnosed with malignant bone tumors and had undergone allograft reconstruction, were recruited. Allograft was fixed by intramedullary nail, single steel plate, double plate, and intramedullary nail combined plate in 2, 4, 17, and 15 cases, respectively. Allograft union, local recurrence, and complications were assessed with clinical and radiological tests. Tumor grade was assessed using the Enneking staging of malignant bone tumors. Functional prognosis was evaluated by the Musculoskeletal Tumor Society (MSTS) scoring system. RESULTS: Intercalary and osteoarticular reconstructions were performed in 32 and 6 cases, respectively. Six patients underwent reoperation related to allograft complications, four patients had local recurrence, and three patients with allograft fracture underwent allograft removal. A total of eight host-donor junctions showed nonunion, including seven cases (18.4%) in diaphysis and one case (3.1%) in metaphysis (p < 0.01). Host rejection and secondary osteoarthritis occurred in nine and two cases, respectively. No deep infection and internal fixation device fracture occurred. The overall allograft survival rate was 81.6%. Postoperative MSTS score of patients with allograft survival was 26.8 ± 2.9, indicating a significant improvement as compared to their preoperative function. CONCLUSIONS: Allograft represents an excellent choice for intercalary bone defects after malignant bone tumor resection. Robust internal fixation protection across the whole length of the allograft is an important prerequisite for the survival of the allograft, while multidimensional osteotomy, intramedullary cement reinforcement, and pedicled muscle flap transfer can effectively improve the survival rate and healing rate of the allograft.


Asunto(s)
Neoplasias Óseas , Procedimientos de Cirugía Plástica , Masculino , Humanos , Femenino , Estudios Retrospectivos , Resultado del Tratamiento , Neoplasias Óseas/patología , Aloinjertos/patología , Trasplante Óseo/métodos
19.
Genomics ; 114(4): 110416, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35718089

RESUMEN

The BBS2 gene plays a vital role in human obesity and fat deposition. However, little is known about it in beef cattle. Therefore, this study investigates the function of BBS2 in the fat deposition of beef cattle and screens the effective SNPs marker for meat quality traits in cattle breeding. The expression of BBS2 is negatively correlated with marbling ratios of beef cattle. Moreover, the knockdown of BBS2 promoted adipogenesis and lipid accumulation of bovine preadipocytes by stimulating PPARγ, FABP4, and FASN expression (P < 0.01). Four novel SNPs in the exons of BBS2 in Chinese Qinchuan cattle were identified and of which the g.24226239C > T (Q527), g.24223562G > A (V441I), and g.24227851A > G (Q627R) were significantly associated with the meat quality of Qinchuan cattle (P < 0.01, P < 0.05). The findings suggested that BBS2 could be used as a candidate gene for meat quality improvement in Qinchuan cattle. Furthermore, these genotypes can be exploited as molecular markers in future beef breeding projects.


Asunto(s)
Adipogénesis , Carne , Adipogénesis/genética , Animales , Bovinos/genética , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple , Proteínas/genética , Análisis de Secuencia de ADN
20.
J Med Virol ; 94(11): 5325-5335, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35859097

RESUMEN

Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Humanos , Inmunoensayo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/diagnóstico , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA