Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37882776

RESUMEN

An aerobic, Gram-negative, non-motile, yellow-to-orange pigmented and round bacterium, designated strain SCSIO 72103T, was isolated from sediment collected in the Pearl River Estuary, Guangdong Province, PR China and subjected to a polyphasic taxonomic study. Growth occurred at 20-37 °C (optimum, 28 °C), pH 6-8 (optimum, pH 7) and with 1-5.5% NaCl (optimum, 1-3 %). Comparative 16S rRNA gene analysis indicated that strain SCSIO 72103T had the highest similarities to Flavobacterium baculatum SNL9T (94.7 %) and Myroides aquimaris SW105T (94.2 %). Phylogenetic analysis based 16S rRNA gene sequences showed that strain SCSIO 72103T formed a single clade with M. aquimaris SW105T. Strain SCSIO 72103T contained iso-C15 : 0 as the major fatty acid and the predominant respiratory quinone was menaquinone MK-6. These characteristics are consistent with those of F. baculatum SNL9T and M. aquimaris SW105T. Phosphatidylethanolamine, most notably, unidentified aminolipid and unidentified aminophospholipid were major polar lipids. Strain SCSIO 72103T had a single circular chromosome of 2.96 Mb with a DNA G+C content of 35.1 mol%. The average nucleotide identity, average amino acid identity (AAI) and digital DNA-DNA hybridization values showed that the pairwise similarities between SCSIO 72103T and the type strains of F. baculatum SNL9T and M. aquimaris SW105T were 78.5-80.5 %, 79.0-81.4 % and 22.7-22.8 %, respectively. The AAI values between species in this clade and the type species of Flavobacterium and Myroides were below the 65 % threshold, indicating that these species belong to a novel genus. On the basis of phylogenetic, physiological and chemotaxonomic characteristics, strain SCSIO 72103T represents a new species of a novel genus, for which the name Paenimyroides aestuarii gen. nov. sp. nov. is proposed. The type strain is SCSIO 72103T (=KCTC 92043T=MCCC 1K06659T). It is also proposed that nine known species in the genera Flavobacterium and Myroides are reclassified as Paenimyroides species.


Asunto(s)
Estuarios , Flavobacterium , Flavobacterium/genética , Filogenia , ARN Ribosómico 16S/genética , Ríos , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias Aerobias , Aminoácidos
2.
Appl Environ Microbiol ; 88(2): e0222621, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34818100

RESUMEN

Uronic acids are commonly found in marine polysaccharides and increase structural complexity and intrinsic recalcitrance to enzymatic attack. Glycoside hydrolase family 2 (GH2) includes proteins that target sugar conjugates with hexuronates and are involved in the catabolism and cycling of marine polysaccharides. Here, we report a novel GH2, AqGalA from a marine alga-associated Bacteroidetes organism with broad substrate specificity. Biochemical analyses revealed that AqGalA exhibits hydrolyzing activities against ß-galacturonide, ß-glucuronide, and ß-galactopyranoside via retaining mechanisms. We solved the AqGalA crystal structure in complex with galacturonic acid (GalA) and determined (via mutagenesis) that charge characteristics at uronate-binding subsites controlled substrate selectivity for uronide hydrolysis. Additionally, conformational flexibility of the AqGalA active-site pocket was proposed as a key component for broad substrate enzyme selectivity. Our AqGalA structural and functional data augment the current understanding of substrate recognition of GH2 enzymes and provide key insights into the bacterial use of uronic acid-containing polysaccharides. IMPORTANCE The decomposition of algal glycans driven by marine bacterial communities represents one of the largest heterotrophic transformations of organic matter fueling marine food webs and global carbon cycling. However, our knowledge on carbohydrate cycling is limited due to structural complexity of marine polysaccharides and the complicated enzymatic machinery of marine microbes. To degrade algal glycan, marine bacteria such as members of the Bacteroidetes produce a complex repertoire of carbohydrate-active enzymes (CAZymes) matching the structural specificities of the different carbohydrates. In this study, we investigated an extracellular GH2 ß-glycosidase, AqGalA from a marine Bacteroidetes organism, to identify the key components responsible for glycuronide recognition and hydrolysis. The broad substrate specificity of AqGalA against glycosides with diverse stereochemical substitutions indicates its potential in processing complex marine polysaccharides. Our findings promote a better understanding of microbially driven mechanisms of marine carbohydrate cycling.


Asunto(s)
Bacterias , Glicósido Hidrolasas , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Especificidad por Sustrato
3.
Artículo en Inglés | MEDLINE | ID: mdl-35511243

RESUMEN

A Gram-stain-positive, aerobic, non-pigmented and non-motile actinobacterium, designated strain SCSIO 67246T, was isolated from a stony coral sample collected from the Sanya sea area, Hainan province, China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SCSIO 67246T shared the highest similarities with Nocardioides rotundus MCCC 1A10561T (96.5 %) and Nocardioides sonneratiae KCTC 39565T (96.1%). The novel strain grew at 15-37 °C, at pH 5.0-10.0 and in the presence of 0-10 % (w/v) NaCl. The genome length of strain SCSIO 67246T was 3.52 Mbp with a DNA G+C content of 72.0 mol% and 3397 protein-coding genes. The novel strain showed an average nucleotide identity value of 76.5 % and a digital DNA-DNA hybridization value of 20.1 % with N. rotundus MCCC 1A10561T. Strain SCSIO 67246T contained MK-8(H4) as the major menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and five phospholipids. The major cellular fatty acids were iso-C16 : 0, C17 : 1 ω8c and summed feature 9 (iso-C17 : 1 ω9c/10-methyl C16 : 0). ll-2,6-Diaminopimelic acid was the diagnostic diamino acid. The whole-cell sugars were galactose, glucose and ribose. Based on this polyphasic taxonomic study, strain SCSIO 67246T represents a novel species of the genus Nocardioides, for which the name Nocardioides coralli sp. nov. is proposed. The type strain is SCSIO 67246T (=MCCC 1K06251T=KCTC 49719T).


Asunto(s)
Actinobacteria , Actinomycetales , Antozoos , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Nocardioides , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
4.
Environ Microbiol ; 23(2): 826-843, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32686311

RESUMEN

A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.


Asunto(s)
Antozoos/genética , Antozoos/microbiología , Bacterias/genética , Microbiota , Agua de Mar/química , Animales , Antozoos/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Arrecifes de Coral , Dinoflagelados/genética , Dinoflagelados/fisiología , Calor , Agua de Mar/microbiología , Agua de Mar/parasitología , Simbiosis , Temperatura , Transcripción Genética
5.
BMC Microbiol ; 21(1): 130, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910503

RESUMEN

BACKGROUND: The coral microbiome plays a key role in host health by being involved in energy metabolism, nutrient cycling, and immune system formation. Inoculating coral with beneficial bacterial consortia may enhance the ability of this host to cope with complex and changing marine environments. In this study, the coral Pocillopora damicornis was inoculated with a beneficial microorganisms for corals (BMC) consortium to investigate how the coral host and its associated microbial community would respond. RESULTS: High-throughput 16S rRNA gene sequencing revealed no significant differences in bacterial community α-diversity. However, the bacterial community structure differed significantly between the BMC and placebo groups at the end of the experiment. Addition of the BMC consortium significantly increased the relative abundance of potentially beneficial bacteria, including the genera Mameliella and Endozoicomonas. Energy reserves and calcification rates of the coral host were also improved by the addition of the BMC consortium. Co-occurrence network analysis indicated that inoculation of coral with the exogenous BMC consortium improved the physiological status of the host by shifting the coral-associated microbial community structure. CONCLUSIONS: Manipulating the coral-associated microbial community may enhance the physiology of coral in normal aquarium conditions (no stress applied), which may hypothetically contribute to resilience and resistance in this host.


Asunto(s)
Antozoos/microbiología , Biodiversidad , Interacciones Microbiota-Huesped/fisiología , Microbiota/fisiología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Ribosómico 16S/genética
6.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34904940

RESUMEN

A novel thermophilic bacterium, designated SCSIO 07484T, was isolated from marine sediment sampled in the South China Sea. Growth occurred at 30-60 °C, pH 6.0-8.0 and in the presence of 0-3 % (w/v) NaCl. Cells of strain SCSIO 07484T were rod-shaped and flagellum-forming. No soluble pigment was observed. The phylogenetic analysis of the 16S rRNA gene sequences indicated that SCSIO 07484T belonged to the family Paenibacillaceae and clustered with members of the genus Brevibacillus in the phylogenetic trees with less than 96.2 % similarities. The cell wall contained meso-diaminopimelic acid. Whole-cell hydrolysates contained arabinose, glucose and ribose. The predominant menaquinone was MK-7. Major fatty acids were iso-C16 : 0, iso-C15 : 0, C16 : 0 and iso-C14 : 0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine were its diagnostic polar lipids. The whole genome size of strain SCSIO 07484T was 4 079 826 bp with a DNA G+C content of 56.2 mol%, including one circular chromosome of 3 978392 bp and one plasmid of 101434 bp. Based on the polyphasic analysis of strain SCSIO 07484T, it is considered to represent a novel species of the genus Brevibacillus, for which the name Brevibacillus marinus sp. nov. is proposed with the type strain SCSIO 07484T (=DSM 106769T=CGMCC 1.15814T).


Asunto(s)
Brevibacillus , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Brevibacillus/genética , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
J Phycol ; 57(4): 1254-1265, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33655511

RESUMEN

Calcareous macroalgae are of particular ecological importance as primary producers, carbonate sediment builders, and habitat providers in coral reef ecosystems. Ocean warming is a major threat to calcareous algae, but it remains unclear exactly how these algae will respond to it. In this study, the potential physiological impacts of ocean warming on the calcareous alga Amphiroa fragilissima were evaluated in laboratory experiments. Increasing temperature from 26 to 28°C had positive effects on algal growth rate and chlorophyll a content, but these parameters decreased significantly at 32°C, which is 5°C above the annual mean temperature in the study region. Algal bleaching occurred at 34°C. There were no significant differences in CaCO3 content of thalli among different temperatures; however, calcification rate was inhibited significantly at 32 and 34°C. Transcriptome analyses using the Illumina RNA-seq platform showed that differentially expressed genes were annotated mainly in the categories of steroid biosynthesis, gap junction, ribosome, and mTOR signaling pathway. The expression levels of PsbA and PsbP were suppressed at 32°C, implying that inactivation of photosystem II could be a main reason for the decreased photosynthetic rate. Down-regulation of the genes encoding carbonic anhydrase and nitrate reductase was observed at 32°C, which could inhibit growth rate. Additionally, several genes that might be related to calcification were identified, including CAMK, CDPK, and CAM and genes encoding alpha-catenin and carbonic anhydrase. This study contributes to our understanding of the effects of temperature on algal calcification and provides a theoretical basis to protect ecological diversity of coral reef ecosystems.


Asunto(s)
Antozoos , Algas Marinas , Animales , Antozoos/genética , Clorofila A , Arrecifes de Coral , Ecosistema , Temperatura , Transcriptoma
8.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32917756

RESUMEN

Laminarin is an abundant algal polysaccharide that serves as carbon storage and fuel to meet the nutrition demands of heterotrophic microbes. Laminarin depolymerization catalyzed by microbial extracellular enzymes initiates remineralization, a key process in ocean biogeochemical cycles. Here, we described a glycoside hydrolase 16 (GH16) family laminarinase from a marine alga-associated Flavobacterium at the biochemical and structural levels. We found that the endolytic enzyme cleaved laminarin with a preference for ß-1,3-glycoside linkages and showed transglycosylation activity across a broad range of acceptors. We also solved and compared high-resolution crystal structures of laminarinase in the apo form and in complex with ß-1,3-tetrasaccharides, revealing an expanded catalytic cleft formed following substrate binding. Moreover, structure and mutagenesis studies identified multiple specific contacts between the enzyme and glucosyl residues essential for the substrate specificity for ß-1,3-glucan. These results provide novel insights into the structural requirements for substrate binding and catalysis of GH16 family laminarinase, enriching our understanding of bacterial utilization of algal laminarin.IMPORTANCE Heterotrophic bacterial communities are key players in marine biogeochemical cycling due to their ability to remineralize organic carbon. Processing of complex organic matter requires heterotrophic bacteria to produce extracellular enzymes with precise specificity to depolymerize substrates to sizes sufficiently small for uptake. Thus, extracellular enzymatic hydrolysis initiates microbe-driven heterotrophic carbon cycling. In this study, based on biochemical and structural analyses, we revealed the depolymerization mechanism of ß-1,3-glucan, a carbon reserve in algae, by laminarinase from an alga-associated marine Flavobacterium The findings provide new insights into the substrate recognition and catalysis of bacterial laminarinase and promote a better understanding of how extracellular enzymes are involved in organic matter cycling.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasas/metabolismo , Flavobacteriaceae/enzimología , Proteínas Bacterianas/química , Celulasas/química , Conformación Proteica , Especificidad por Sustrato
9.
Biotechnol Bioeng ; 117(9): 2694-2702, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515491

RESUMEN

Enzyme promiscuity is critical to the acquisition of evolutionary plasticity in cells and can be recruited for high-value chemical synthesis or xenobiotic degradation. The molecular determinants of substrate ambiguity are essential to this activity; however, these details remain unknown. Here, we performed the directed evolution of a prolidase to enhance its initially weak paraoxonase activity. The in vitro evolution led to an unexpected 1,000,000-fold switch in substrate selectivity, with a 30-fold increase in paraoxon hydrolysis and 40,000-fold decrease in peptide hydrolysis. Structural and in silico analyses revealed enlarged catalytic cavities and substrate repositioning as responsible for rapid catalytic transitions between distinct chemical reactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dominio Catalítico/genética , Dipeptidasas/metabolismo , Paraoxon/metabolismo , Ingeniería de Proteínas/métodos , Proteínas Bacterianas/genética , Dipeptidasas/genética , Evolución Molecular Dirigida , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Paraoxon/química , Especificidad por Sustrato
10.
Int J Syst Evol Microbiol ; 70(10): 5576-5585, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32941125

RESUMEN

Two novel Gram-stain-positive bacteria, designated as SCSIO 52909T and SCSIO 52915T, were isolated from a deep-sea sediment sample collected at about 3448 m water depth of the South China Sea. Phenotypic, chemotaxonomic and genomic characteristics were investigated. These strains were aerobic and tested positive for catalase activity, oxidase activity and nitrate reduction. Optimal growth occurred at 28 °C, pH 7 and 3% salinity over 14 days cultivation. Its peptidoglycan structure was type A3α (l-Lys-l-Ala) and the only menaquinone was MK-8. Both strains possessed diphosphatidylglycerol, phosphatidylglycerol, an unidentified phosphoglycolipid, an unidentified glycolipid and an unidentified phospholipid. Their major fatty acids differed, but both contained iso-branched components of C16 : 0 12-methyl. Genome sequencing revealed two large genomes of 4.58 Mbp with G+C content of 67.0 mol% in SCSIO 52909T and of 4.42 Mbp with G+C content of 69.1 % in SCSIO 52915T. The two novel strains encoded genes for metabolism that are absent in most other Rubrobacter species, and possessed many more gene copy numbers of alkaline phosphatase and thioredoxin reductase. Results of gANI and 16S rRNA gene analyses suggested that the two strains represent two new species, with 74.9, 95.0 % pairwise similarity between each other, and less than 74.3 and 93.5 % to other recognized Rubrobacter species, respectively. In the phylogenetic analysis, strains SCSIO 52909T and SCSIO 52915T were separately clustered together and formed a well-separated phylogenetic branch distinct from the other known species in the genus Rubrobacter. Based on the data presented here, these two strains should be recognized as two new species in the genus Rubrobacter, for which the names Rubrobacter tropicus sp. nov., with the type strain SCSIO 52909T (=KCTC 49412T=CGMCC 1.13853T), and Rubrobacter marinus sp. nov., with the type strain SCSIO 52915T (=KCTC 49411T=CGMCC 1.13852T), are proposed.


Asunto(s)
Actinobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Océano Pacífico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Int J Syst Evol Microbiol ; 70(6): 3852-3858, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32501198

RESUMEN

A novel marine actinobacterium, strain SCSIO 58843T, was isolated from the sediment sample collected from the South China Sea. Strain SCSIO 58843T was Gram-stain-positive, aerobic and rod shaped. The whole-cell hydrolysis of amino acids contained dd-DAP, alanine, glutamic acid, glycine and aspartic acid. The main menaquinone was MK-9(H8). The major fatty acids were C17 : 1 ω8c and C17 : 0. The major phospholipids were diphosphatidylglycerol (DPG), phosphatidylinositol (PI), phospatidylcholine (PC) and phosphatidylinositolmannoside (PIM). The G+C content of the genomic DNA was 72.5 %. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain SCSIO 58843T formed a new lineage in the family Iamiaceae and had the highest similarity of 93.8 % with Iamia majanohamensis DSM 19957T. Strain SCSIO 58843T can be distinguished from these known genera in the family Iamiaceae by polyphasic data analyses, and represents a novel genus and novel species, for which Actinomarinicola tropica gen. nov., sp. nov is proposed with the type strain SCSIO 58843T(=KCTC 49408T=CGMCC 1.17503T).


Asunto(s)
Actinobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
J Phycol ; 56(5): 1208-1215, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32306387

RESUMEN

Survival of coral reef-associated Symbiodiniaceae is vital to maintain the healthy coral community in coral reefs. However, knowledge about cultivation of free-living or symbiotic Symbiodiniaceae has been limited. In this study, the response surface methodology was applied to optimize the medium for Effrenium voratum. The results showed that the impacts of nutrient components on algal growth were: FeCl3 > NaH2 PO4 >MnSO4 > MgSO4 /CoSO4 > KCl>ZnSO4 > CaCl2 /NaNO3 , among which NaH2 PO4 and FeCl3 significantly affected algal growth. The optimal medium was: natural seawater supplemented with NaH2 PO4 ·2H2 O 0.25 mM,FeCl3 ·6H2 O 14.24 µM, NaNO3 0.94 mM, MgSO4 ·7H2 O 40.63 mM, KCl 5.37 mM, CaCl2 ·2H2 O 4.08 mM, ZnSO4 ·7H2 O 0.35 µM, MnSO4 9.93 µM, and CoSO4 0.36 µM. The use of the optimized medium resulted in an increase of biomass yield (0.76 g dry weight · L-1 ) by 46% over that using the initial medium, which agreed with the predicted value (0.71 g · L-1 ). Additionally, fatty acids, mainly consisting of palmitic acid (C16:0) and ethyl carbonate (C20:0), accounted for approximately 50% of the total fatty acids in E. voratum. Interestingly, docosahexaenoic acid (DHA) accounted for 6% of total fatty acids, a high proportion that makes E. voratum a potential candidate feedstock in aquaculture for DHA production.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Biomasa , Arrecifes de Coral , Medios de Cultivo
13.
Int J Syst Evol Microbiol ; 69(11): 3362-3367, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31622228

RESUMEN

A novel Gram-stain-negative bacterium, designated as SCSIO 06110T, was isolated from a deep-sea sediment of the West Pacific Ocean. Cells were 0.5-0.8 µm in width and 3.0-4.0 µm in length, spore-forming, rod-shaped with peritrichous flagella. Positive for catalase and urease, negative for oxidase and nitrate reduction. Growth occurred at 15-37 °C, pH 6-9 and 1-5 % (w/v) NaCl, with optimum growth at 28 °C, pH 7 and 3 % (w/v) NaCl. MK-7 was the only menaquinone. The strain possessed diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids. Iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0 were the major fatty acids. The novel isolate clustered with genera in the family Paenibacillaceae, but formed a separated branch with the closest relative Chengkuizengella sediminis J15A17T (91.1 % sequence similarity) when compared in a phylogenetic analysis of 16S rRNA gene sequences. The DNA G+C content of strain SCSIO 06110T was 38.5 mol%. Based on the polyphasic data presented, a new genus, Longirhabdus gen. nov., is proposed in the family Paenibacillaceae with the type species Longirhabdus pacifica sp. nov. and the type strain SCSIO 06110T (=DSM 105158T=CGMCC 1.16550T).


Asunto(s)
Bacillales/clasificación , Sedimentos Geológicos/microbiología , Respiraderos Hidrotermales/microbiología , Filogenia , Bacillales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Océano Pacífico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 69(5): 1452-1458, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30882294

RESUMEN

A novel bacterium, designated SCSIO 07575T, was isolated from a deep-sea hydrothermal sediment sample collected from the western Pacific Ocean. Growth at 65 °C was observed, but not at 70 °C or below 37 °C. The optimum conditions for growth were at 55-65 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Strain SCSIO 07575T showed filamentous growth. Unstable formation of white aerial mycelia was observed, which disappeared after several times' subculture. Abundant substrate mycelia were observed with grape-like spores. No soluble pigment was observed. Phylogenetic analysis of 16S rRNA gene sequences showed that SCSIO 07575T belonged to the family Thermoactinomycetaceae and formed a distinct clade in the phylogenetic tree. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Whole-cell hydrolysates contained ribose, xylose, glucose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid and two unidentified phospholipids. The predominant menaquinone was MK-7. Major fatty acids were iso-C15 : 0, iso-C17 : 0 and iso-C16 : 0. Based on the whole genome sequence analysis, the genome size was 2 751 094 bp with a DNA G+C value of 57.2 mol%, including one circular chromosome and one plasmid. On the basis of polyphasic data, strain SCSIO 07575T represented a novel species of a new genus within the family Thermoactinomycetaceae, for which the name Staphylospora gen. nov. is proposed with the type species Staphylospora marina sp. nov. and the type strain SCSIO 07575T (=DSM 106793T=CGMCC 1.15879T).


Asunto(s)
Bacillales/clasificación , Respiraderos Hidrotermales/microbiología , Filogenia , Bacillales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Océano Pacífico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Microb Cell Fact ; 18(1): 166, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31601206

RESUMEN

BACKGROUND: Polyhydroxyalkanoate (PHA) are nano-granules naturally produced by bacteria. Two types of proteins, PHA synthase (PhaC) and phasins (PhaPs), are attached to the PHA surface by covalent and hydrophobic interactions. Utilizing these anchored proteins, functionalized PHA nano-granules displaying proteins of interest can be easily prepared by fermentation. RESULTS: In this study, a one-step fabrication method was developed for stable and efficient immobilization of an organophosphorus degrading enzyme on PHA nano-granules. The nano-biocatalysts were produced in recombinant Escherichia coli cells into which the polyhydroxyalkanoate synthesis pathway from Cupriavidus necator had been introduced. Two different strategies, covalent attachment and hydrophobic binding, were investigated by fusing bacterial organophosphorus anhydride hydrolase (OPAA4301) with PhaC and PhaP, respectively. Using both methods, the tetrameric enzyme successfully self-assembled and was displayed on the PHA surface. The display density of the target fused enzyme was enhanced to 6.8% of total protein on decorated PHA by combination of covalent and non-covalent binding modes. Immobilization of the enzyme on PHA granules resulted in higher catalytic efficiency, increased stability and excellent reusability. The kcat values of the immobilized enzymes increased by threefold compared to that of the free enzyme. The pH stability under acidic conditions was significantly enhanced, and the immobilized enzyme was stable at pH 3.0-11.0. Furthermore, more than 80% of the initial enzyme activity retained after recycling ten times. CONCLUSIONS: This study provides a promising approach for cost-efficient in vivo immobilization of a tetrameric organophosphorus degrading enzyme. The immobilization process expands the utility of the enzyme, and may inspire further commercial developments of PHA nano-biocatalysts. As revealed by our results, combination of covalent and non-covalent binding is recommended for display of enzymes on PHA granules.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Cupriavidus necator/enzimología , Enzimas Inmovilizadas/metabolismo , Escherichia coli , Microorganismos Modificados Genéticamente , Polihidroxialcanoatos/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Polihidroxialcanoatos/genética
16.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29915108

RESUMEN

Picocyanobacteria Prochlorococcus and Synechococcus are abundant in the global oceans and subject to active viral infection. In this study, the genetic diversity of picocyanobacteria and the genetic diversity of cyanopodoviruses were synchronously investigated along water columns in the equatorial Indian Ocean and over a seasonal time course in the coastal Sanya Bay, South China Sea. Using the 16S-23S rRNA internal transcribed spacer (ITS)-based clone library and quantitative PCR (qPCR) analyses, the picocyanobacterial community composition and abundance were determined. Sanya Bay was dominated by clade II Synechococcus during all the seasons, and a typical population shift from high-light-adapted Prochlorococcus to low-light-adapted Prochlorococcus was found along the vertical profiles. Strikingly, the DNA polymerase gene sequences of cyanopodoviruses revealed a much greater genetic diversity than we expected. Nearly one-third of the phylogenetic groups were newly described here. No apparent seasonal pattern was observed for the Sanya Bay picocyanobacterial or cyanopodoviral communities. Different dominant cyanopodovirus lineages were identified for the coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean. Diversity indices of both picocyanobacteria and cyanopodoviruses were highest in the middle euphotic zone and both were lower in the upper euphotic zone, reflecting a host-virus interaction. Cyanopodoviral communities differed significantly between the upper euphotic zone and the middle-to-lower euphotic zone, showing a vertical pattern similar to that of picocyanobacteria. However, in the surface waters of the open ocean, cyanopodoviruses exhibited no apparent biogeographic pattern, differing from picocyanobacteria. This study demonstrates correlated distribution patterns of picocyanobacteria and cyanopodoviruses, as well as the complex biogeography of cyanopodoviruses.IMPORTANCE Picocyanobacteria are highly diverse and abundant in the ocean and display remarkable global biogeography and a vertical distribution pattern. However, how the diversity and distribution of picocyanobacteria affect those of the viruses that infect them remains largely unknown. Here we synchronously analyzed the community structures of cyanopodoviruses and picocyanobacteria at spatial and temporal scales. Both spatial and temporal variations of cyanopodoviral communities can be linked to those of picocyanobacteria. The coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean have distinct cyanopodoviral communities, showing horizontal and vertical variation patterns closely related to those of picocyanobacteria. These findings emphasize the driving force of host community in shaping the biogeographic structure of viruses. Our work provides important information for future assessments of the ecological roles of viruses and hosts for each other.


Asunto(s)
Variación Genética , Consorcios Microbianos , Podoviridae/genética , Prochlorococcus/genética , Synechococcus/genética , China , ADN Espaciador Ribosómico/genética , Interacciones Microbianas , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Estaciones del Año , Agua de Mar/microbiología , Agua de Mar/virología
17.
Int J Syst Evol Microbiol ; 68(12): 3707-3712, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30307384

RESUMEN

A novel basophilic bacterial strain, designated as SCSIO 08040T, was recovered from a deep-sea sediment sample collected from the Indian Ocean. The strain was Gram-stain-negative, vibrioid or spiral, light pink, 0.6-1.0 µm wide and 1.0-2.5 µm long. Growth occurred at 20-45 °C, pH 7-11 and <5 % (w/v) NaCl, with optimum growth at 28-37 °C, pH 7 and 0-3 % (w/v) NaCl. Catalase-, oxidase and urease-positive, nitrate reduction-negative. Analysis of 16S rRNA gene sequencing revealed that strain SCSIO 08040T had the highest similarity of 95.3 % to Rhodocista pekingensis 3-pT. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences showed that the novel isolate formed a distinct phylogenetic lineage in the family Rhodospirillaceae. The whole-cell hydrolysate contained meso-diaminopimelic acid, galactose, mannose and xylose. The total cellular fatty acid profile was dominated by C18:1ω7c and C19:0cycloω8c. Q-10 was the predominant ubiquinone. The major phospholipids were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. The DNA G+C content of strain SCSIO 08040T was 66.82 mol%. Based on these polyphasic data, a new genus, Indioceanicola gen. nov., is proposed in the family Rhodospirillaceae with the type species Indioceanicola profundi sp. nov. and the type strain SCSIO 08040T (=DSM 105146T=CGMCC 1.15812T).


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Rhodospirillaceae/clasificación , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Océano Índico , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Rhodospirillaceae/genética , Rhodospirillaceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
18.
Int J Syst Evol Microbiol ; 68(11): 3487-3493, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30300120

RESUMEN

A novel mesophilic marine actinobacterial strain, designated as SCSIO 08198T, was isolated from a deep-sea sediment sample collected from the Indian Ocean. The strain was Gram-stain-positive, rod-shaped and salmon pink in colour. Good growth occurred on marine agar with 1-5 % (w/v) NaCl and incubation at 28 °C for more than a fortnight. Sensitive to short ultraviolet radiation. Analysis of 16S rRNA gene sequences revealed that strain SCSIO 08198T had the highest similarity of 97.2 % to Rubrobacter radiotolerans DSM 5868T, and loosely related (<94.2 %) to all other species in the genus Rubrobacter. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the novel isolate shared a lineage with members of the genus Rubrobacter. The total cellular fatty acid profile was dominated by C16 : 0 12-methyl. MK-8 was the main menaquinone. The peptidoglycan type was A3α (l-Lys-l-Ala). The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol and unidentified phospholipids. Based on the whole genome sequence analysis, the genome size is 3 078 689 bp with DNA G+C value of 63.8 mol%, including one circular chromosome and two plasmids. Based on these polyphasic data, a new species, Rubrobacterindicoceani sp. nov., is proposed, with the type strain SCSIO 08198T (=DSM 105148T=CGMCC 1.16398T).


Asunto(s)
Actinobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Pared Celular/química , ADN Bacteriano/genética , Ácidos Grasos/química , Océano Índico , Peptidoglicano/química , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Rayos Ultravioleta , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Molecules ; 22(3)2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273835

RESUMEN

For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC) combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...].


Asunto(s)
Millettia/química , Fitoquímicos/análisis , Extractos Vegetales/química , Distribución en Contracorriente , Sinergismo Farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA