Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691098

RESUMEN

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

2.
Bioconjug Chem ; 34(10): 1802-1810, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37751398

RESUMEN

Bioconjugates of antibodies and their derivatives radiolabeled with ß+-emitting radionuclides can be utilized for diagnostic PET imaging. Site-specific attachment of radioactive cargo to antibody delivery vectors provides homogeneous, well-defined immunoconjugates. Recent studies have demonstrated the utility of oxaziridine chemistry for site-specific labeling of methionine residues. Herein, we applied this approach to site-specifically radiolabel trastuzumab-derived Fab immunoconjugates with 68Ga, which can be used for in vivo PET imaging of HER2-positive breast cancer tumors. Initially, a reactive azide was introduced to a single solvent-accessible methionine residue in both the wild-type Fab and an engineered derivative containing methionine residue M74, utilizing the principles of oxaziridine chemistry. Subsequently, these conjugates were functionalized with a modified DFO chelator incorporating dibenzocyclooctyne. The resulting DFO-WT and DFO-M74 conjugates were radiolabeled with generator-produced [68Ga]Ga3+, to yield the novel PET radiotracers, [68Ga]Ga-DFO-WT and [68Ga]Ga-DFO-M74. In vitro and in vivo studies demonstrated that [68Ga]Ga-DFO-M74 exhibited a higher affinity for HER2 receptors. Biodistribution studies in mice bearing orthotopic HER2-positive breast tumors revealed a higher uptake of [68Ga]Ga-DFO-M74 in the tumor tissue, accompanied by rapid renal clearance, enabling clear delineation of tumors using PET imaging. Conversely, [68Ga]Ga-DFO-WT exhibited lower uptake and inferior image contrast compared to [68Ga]Ga-DFO-M74. Overall, the results demonstrate that the highly facile methionine-oxaziridine modification approach can be simply applied to the synthesis of stable and site-specifically modified radiolabeled antibody-chelator conjugates with favorable pharmacokinetics for PET imaging.


Asunto(s)
Inmunoconjugados , Neoplasias , Animales , Ratones , Trastuzumab/química , Radioisótopos de Galio , Metionina , Distribución Tisular , Deferoxamina/química , Tomografía de Emisión de Positrones/métodos , Quelantes/química , Racemetionina , Inmunoconjugados/química , Circonio/química , Línea Celular Tumoral
3.
Circ Res ; 127(7): 928-944, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32611235

RESUMEN

RATIONALE: The efficient resolution of tissue hemorrhage is an important homeostatic function. In human macrophages in vitro, heme activates an AMPK (AMP-activated protein kinase)/ATF1 (activating transcription factor-1) pathway that directs Mhem macrophages through coregulation of HO-1 (heme oxygenase-1; HMOX1) and lipid homeostasis genes. OBJECTIVE: We asked whether this pathway had an in vivo role in mice. METHODS AND RESULTS: Perifemoral hematomas were used as a model of hematoma resolution. In mouse bone marrow-derived macrophages, heme induced HO-1, lipid regulatory genes including LXR (lipid X receptor), the growth factor IGF1 (insulin-like growth factor-1), and the splenic red pulp macrophage gene Spic. This response was lost in bone marrow-derived macrophages from mice deficient in AMPK (Prkab1-/-) or ATF1 (Atf1-/-). In vivo, femoral hematomas resolved completely between days 8 and 9 in littermate control mice (n=12), but were still present at day 9 in mice deficient in either AMPK (Prkab1-/-) or ATF1 (Atf1-/-; n=6 each). Residual hematomas were accompanied by increased macrophage infiltration, inflammatory activation and oxidative stress. We also found that fluorescent lipids and a fluorescent iron-analog were trafficked to lipid-laden and iron-laden macrophages respectively. Moreover erythrocyte iron and lipid abnormally colocalized in the same macrophages in Atf1-/- mice. Therefore, iron-lipid separation was Atf1-dependent. CONCLUSIONS: Taken together, these data demonstrate that both AMPK and ATF1 are required for normal hematoma resolution. Graphic Abstract: An online graphic abstract is available for this article.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factor de Transcripción Activador 1/metabolismo , Hematoma/metabolismo , Macrófagos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Factor de Transcripción Activador 1/genética , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Eritrocitos/metabolismo , Femenino , Hematoma/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hierro/metabolismo , Metabolismo de los Lípidos , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Factores de Tiempo
4.
Inorg Chem ; 61(20): 8000-8014, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35544683

RESUMEN

N-Triphos derivatives (NP3R, R = alkyl, aryl) and asymmetric variants (NP2RXR', R' = alkyl, aryl, X = OH, NR2, NRR') are an underexplored class of tuneable, tripodal ligands in relation to the coordination chemistry of Re and Tc for biomedical applications. Mixed-ligand approaches are a flexible synthetic route to obtain Tc complexes of differing core structures and physicochemical properties. Reaction of the NP3Ph ligand with the Re(V) oxo precursor [ReOCl3(PPh3)2] generated the bidentate complex [ReOCl3(κ2-NP2PhOHAr)], which possesses an unusual AA'BB'XX' spin system with a characteristic second-order NMR lineshape that is sensitive to the bi- or tridentate nature of the coordinating diphosphine unit. The use of the asymmetric NP2PhOHAr ligand resulted in the formation of both bidentate and tridentate products depending on the presence of base. The tridentate Re(V) complex [ReOCl2(κ3-NP2PhOAr)] has provided the basis of a new reactive "metal-fragment" for further functionalization in [3 + 2] mixed-ligand complexes. The synthesis of [3 + 2] complexes with catechol-based π-donors could also be achieved under one-pot, single-step conditions from Re(V) oxo precursors. Analogous complexes can also be synthesized from suitable 99Tc(V) precursors, and these complexes have been shown to exhibit highly similar structural properties through spectroscopic and chromatographic analysis. However, a tendency for the {MVO}3+ core to undergo hydrolysis to the {MVO2}+ core has been observed both in the case of M = Re and markedly for M = 99Tc complexes. It is likely that controlling this pathway will be critical to the generation of further stable Tc(V) derivatives.


Asunto(s)
Fosfinas , Ligandos , Espectroscopía de Resonancia Magnética , Fosfinas/química
5.
J Public Health (Oxf) ; 44(4): e548-e556, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35020940

RESUMEN

BACKGROUND: Many public health experts have claimed that elimination strategies of pandemic response allow 'normal social life' to resume. Recognizing that social connections and feelings of normality are important for public health, this study examines whether, and for whom, that goal is realized, and identifies obstacles that may inhibit its achievement. METHODS: Thematic analysis of narratives obtained via a qualitative cross-sectional survey of a community cohort in Aotearoa | New Zealand. RESULTS: A majority of participants reported that life after elimination was 'more or less the same' as before the pandemic. Some became more social. Nevertheless, a sizeable minority reported being less social, even many months after elimination. Key obstacles to social recovery included fears that the virus was circulating undetected and the enduring impact of lockdowns upon social relationships, personal habits and mental health. Within our sample, old age and underlying health conditions were both associated with a propensity to become less social. CONCLUSIONS: Elimination strategies can successfully allow 'normal social life' to resume. However, this outcome is not guaranteed. People may encounter difficulties with re-establishing social connections in Zero-COVID settings. Measures designed to overcome such obstacles should be an integral part of elimination strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Transversales , Nueva Zelanda/epidemiología , COVID-19/epidemiología , COVID-19/prevención & control , Control de Enfermedades Transmisibles
6.
Proc Natl Acad Sci U S A ; 116(52): 26614-26624, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822610

RESUMEN

Epstein-Barr nuclear antigen 1 (EBNA1) plays a vital role in the maintenance of the viral genome and is the only viral protein expressed in nearly all forms of Epstein-Barr virus (EBV) latency and EBV-associated diseases, including numerous cancer types. To our knowledge, no specific agent against EBV genes or proteins has been established to target EBV lytic reactivation. Here we report an EBNA1- and Zn2+-responsive probe (ZRL5P4) which alone could reactivate the EBV lytic cycle through specific disruption of EBNA1. We have utilized the Zn2+ chelator to further interfere with the higher order of EBNA1 self-association. The bioprobe ZRL5P4 can respond independently to its interactions with Zn2+ and EBNA1 with different fluorescence changes. It can selectively enter the nuclei of EBV-positive cells and disrupt the oligomerization and oriP-enhanced transactivation of EBNA1. ZRL5P4 can also specifically enhance Dicer1 and PML expression, molecular events which had been reported to occur after the depletion of EBNA1 expression. Importantly, we found that treatment with ZRL5P4 alone could reactivate EBV lytic induction by expressing the early and late EBV lytic genes/proteins. Lytic induction is likely mediated by disruption of EBNA1 oligomerization and the subsequent change of Dicer1 expression. Our probe ZRL5P4 is an EBV protein-specific agent that potently reactivates EBV from latency, leading to the shrinkage of EBV-positive tumors, and our study also suggests the association of EBNA1 oligomerization with the maintenance of EBV latency.

7.
J Am Chem Soc ; 143(17): 6460-6469, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33845576

RESUMEN

Heme oxygenase-1 (HO-1) is a vital enzyme in humans that primarily regulates free heme concentrations. The overexpression of HO-1 is commonly associated with cardiovascular and neurodegenerative diseases including atherosclerosis and ischemic stroke. Currently, there are no known chemical probes to detect HO-1 activity, limiting its potential as an early diagnostic/prognostic marker in these serious diseases. Reported here are the design, synthesis, and photophysical and biological characterization of a coumarin-porphyrin FRET break-apart probe to detect HO-1 activity, Fe-L1. We designed Fe-L1 to "break-apart" upon HO-1-catalyzed porphyrin degradation, perturbing the efficient FRET mechanism from a coumarin donor to a porphyrin acceptor fluorophore. Analysis of HO-1 activity using Escherichia coli lysates overexpressing hHO-1 found that a 6-fold increase in emission intensity at 383 nm was observed following incubation with NADPH. The identities of the degradation products following catabolism were confirmed by MALDI-MS and LC-MS, showing that porphyrin catabolism was regioselective at the α-position. Finally, through the analysis of Fe-L2, we have shown that close structural analogues of heme are required to maintain HO-1 activity. It is anticipated that this work will act as a foundation to design and develop new probes for HO-1 activity in the future, moving toward applications of live fluorescent imaging.


Asunto(s)
Cumarinas/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Hemo-Oxigenasa 1/química , Protoporfirinas/química , Escherichia coli/enzimología , Escherichia coli/genética , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Procesos Fotoquímicos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta
8.
Bioconjug Chem ; 32(7): 1214-1222, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33724798

RESUMEN

Positron Emission Tomography (PET) imaging with antibody-based contrast agents frequently uses the radioisotopes [64Cu]Cu2+ and [89Zr]Zr4+. The macrobicyclic chelator commonly known as sarcophagine (sar) is ideal for labeling receptor-targeted biomolecules with [64Cu]Cu2+. The siderophore chelator, desferrioxamine-B (dfo), has been widely used to incorporate [89Zr]Zr4+ into antibodies. Here, we describe new bifunctional chelators of sar and dfo: these chelators have been functionalized with dibromomaleimides (dbm), that enable site-specific and highly stable attachment of molecular cargoes to reduced, solvent-accessible, interstrand native disulfide groups. The new sar-dbm and dfo-dbm derivatives can be easily conjugated with the IgG antibody trastuzumab via reaction with reduced interstrand disulfide groups to give site-specifically modified dithiomaleamic acid (dtm) conjugates, sar-dtm-trastuzumab and dfo-dtm-trastuzumab, in which interstrand disulfides are rebridged covalently with a small molecule linker. Both sar- and dfo-dtm-trastuzumab conjugates have been radiolabeled with [64Cu]Cu2+ and [89Zr]Zr4+, respectively, in near quantitative radiochemical yield (>99%). Serum stability studies, in vivo PET imaging, and biodistribution analyses using these radiolabeled immunoconjugates demonstrate that both [64Cu]Cu-sar-dtm-trastuzumab and [89Zr]Zr-dfo-dtm-trastuzumab possess high stability in biological milieu. Dibromomaleimide technology can be easily applied to enable stable, site-specific attachment of radiolabeled chelators, such as sar and dfo, to native interstrand disulfide regions of antibodies, enabling tracking of antibodies with PET imaging.


Asunto(s)
Compuestos de Bromina/química , Quelantes/farmacología , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Animales , Humanos
9.
Angew Chem Int Ed Engl ; 60(37): 20301-20307, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34272794

RESUMEN

We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media. This work provides a valuable addition to the peptide macrocyclization toolbox, and a blueprint for the development of multifunctional dipyrrin linkers in cyclopeptides for a wide range of potential bioapplications.


Asunto(s)
Compuestos de Boro/química , Complejos de Coordinación/química , Compuestos Macrocíclicos/química , Péptidos/química , Conformación Molecular
10.
J Am Chem Soc ; 142(19): 8555-8560, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32343894

RESUMEN

The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.

11.
Radiology ; 291(2): 459-466, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30912718

RESUMEN

Background Previous work has demonstrated that drugs can be delivered across the blood-brain barrier by exposing circulating microbubbles to a sequence of long ultrasound pulses. Although this sequence has successfully delivered drugs to the brain, concerns remain regarding potentially harmful effects from disrupting the brain vasculature. Purpose To determine whether a low-energy, rapid, short-pulse ultrasound sequence can efficiently and safely deliver drugs to the murine brain. Materials and Methods Twenty-eight female wild-type mice underwent focused ultrasound treatment after injections of microbubbles and a labeled model drug, while three control mice were not treated (May-November 2017). The left hippocampus of 14 mice was exposed to low-energy short pulses (1 MHz; five cycles; peak negative pressure, 0.35 MPa) of ultrasound emitted at a rapid rate (1.25 kHz) in bursts (0.5 Hz), and another 14 mice were exposed to standard long pulses (10 msec, 0.5 Hz) containing 150 times more acoustic energy. Mice were humanely killed at 0 (n = 5), 10 (n = 3), or 20 minutes (n = 3) after ultrasound treatment. Hematoxylin-eosin (H-E) staining was performed on three mice. The delivered drug dose and distribution were quantified with the normalized optical density and coefficient of variation. Safety was assessed by H-E staining, the amount of albumin released, and the duration of permeability change in the blood-brain barrier. Statistical analysis was performed by using the Student t test. Results The rapid short-pulse sequence delivered drugs uniformly throughout the parenchyma. The acoustic energy emitted from the microbubbles also predicted the delivered dose (r = 0.97). Disruption in the blood-brain barrier lasted less than 10 minutes and 3.4-fold less albumin was released into the brain than with long pulses. No vascular or tissue damage from rapid short-pulse exposure was observable using H-E staining. Conclusion The rapid short-pulse ultrasound sequence is a minimally disruptive and efficient drug delivery method that could improve the treatment, diagnosis, and study of neurologic diseases. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Klibanov and McDannold in this issue.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Sonicación/métodos , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Femenino , Colorantes Fluorescentes/farmacocinética , Hipocampo/química , Ratones , Ratones Endogámicos C57BL , Microburbujas , Sonicación/instrumentación , Distribución Tisular
12.
Med Anthropol Q ; 33(3): 327-344, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29700851

RESUMEN

Cosmopolitan forms of alternative medicine have become very popular in contemporary Indonesia. Many healers have trained in an eclectic range of techniques, predicated on ontological claims so diverse that they call each other's legitimacy into question. This article explores how a collective of alternative healers in central Java navigated the quandaries presented by such therapeutic eclecticism over a six-year period. Healers' engagement with, or indifference toward, the principles underpinning therapeutic efficacy fluctuated in ways that allowed them to surmount the dilemmas of Islamization, the changing demographic of their collective's membership, and the threat of commercialization, thereby maintaining a medical landscape in which alternative healing was widely available and accessible. Transformations in their understanding, experience, and practice of healing should thus be understood in terms of how enduring ethical commitments are refracted through ongoing engagements with a changing social world.


Asunto(s)
Antropología Médica , Terapias Complementarias , Terapias Complementarias/ética , Terapias Complementarias/métodos , Diversidad Cultural , Humanos , Indonesia
13.
Angew Chem Int Ed Engl ; 57(20): 5808-5812, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29575461

RESUMEN

The neuroprotective effect of ceria nanoparticles in the context of brain disorders has been explained by their antioxidant effect. However, the in-depth mechanism remains unknown. As resident immune cells in the brain, microglia exert a variety of functional reprogramming termed as polarization in response to stress stimuli. Herein, custom-made ceria nanoparticles were developed and found to scavenge multiple reactive oxygen species with extremely high efficiency. These nanoparticles drove microglial polarization from a pro-inflammatory phenotype to an anti-inflammatory phenotype under pathological conditions. Pretreatment of these nanoparticles changed the microglial function from detrimental to protective for the neuronal cells by blocking the pro-inflammatory signaling. This work not only helps to elucidate the mechanism of ceria-nanoparticle-mediated neuroprotection but also provides a new strategy to rebalance the immuno-environment by switching the equilibrium of the phenotypic activation of microglia.


Asunto(s)
Microglía/efectos de los fármacos , Nanopartículas/química , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Ratones , Microglía/inmunología , Microglía/metabolismo , Fármacos Neuroprotectores/química , Tamaño de la Partícula , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie
14.
Chemistry ; 23(9): 2133-2143, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-27897344

RESUMEN

The compounds and complexes 1,4-C6 H4 (C≡C-cyclo-3-C4 H3 S)2 (2), trans-[Pt(C≡C-cyclo-3-C4 H3 S)2 (PEt3 )2 ] (3), trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 (dppe)2 ] (4; dppe=1,2-bis(diphenylphosphino)ethane) and trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 {P(OEt)3 }4 ] (5) featuring the 3-thienyl moiety as a surface contacting group for gold electrodes have been prepared, crystallographically characterised in the case of 3-5 and studied in metal|molecule|metal junctions by using both scanning tunnelling microscope break-junction (STM-BJ) and STM-I(s) methods (measuring the tunnelling current (I) as a function of distance (s)). The compounds exhibit similar conductance profiles, with a low conductance feature being more readily identified by STM-I(s) methods, and a higher feature by the STM-BJ method. The lower conductance feature was further characterised by analysis using an unsupervised, automated multi-parameter vector classification (MPVC) of the conductance traces. The combination of similarly structured HOMOs and non-resonant tunnelling mechanism accounts for the remarkably similar conductance values across the chemically distinct members of the family 2-5.

15.
Angew Chem Int Ed Engl ; 56(24): 6838-6842, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28497507

RESUMEN

Cyclic multiredox centered systems are currently of great interest, with new compounds being reported and developments made in understanding their behavior. Efficient, elegant, and high-yielding (for macrocyclic species) synthetic routes to two novel alkynyl-conjugated multiple ferrocene- and biferrocene-containing cyclic compounds are presented. The electronic interactions between the individual ferrocene units have been investigated through electrochemistry, spectroelectrochemistry, density functional theory (DFT), and crystallography to understand the effect of cyclization on the electronic properties and structure.

16.
Inorg Chem ; 55(14): 6839-41, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27355871

RESUMEN

A water-soluble bimetallic normal ("cold") and radiochemical ("hot") gallium-porphyrin-ruthenium-bipyridine complex (GaporRu-1) has been synthesized by microwave methodology in short reaction times with good (>85%) yields. (68)GaporRu-1 is demonstrated to be a potential multimodal and functional bioprobe for positron emission tomography (PET), lysosome specific optical imaging, and photodynamic therapy.


Asunto(s)
Galio/química , Lisosomas/química , Sondas Moleculares/química , Porfirinas/química , Imagen Óptica , Fotoquimioterapia , Tomografía de Emisión de Positrones
17.
J Am Chem Soc ; 137(31): 9971-81, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26181714

RESUMEN

We have applied a new, robust and unsupervised approach to data collection, sorting and analysis that provides fresh insights into the nature of single-molecule junctions. Automation of tunneling current-distance (I(s)) spectroscopy facilitates the collection of very large data sets (up to 100,000 traces for a single experiment), enabling comprehensive statistical interrogations with respect to underlying tunneling characteristics, noise and junction formation probability (JFP). We frequently observe unusual low-to-high through-molecule conductance features with increasing electrode separation, in addition to numerous other "plateau" shapes, which may be related to changes in interfacial or molecular bridge structure. Furthermore, for the first time we use the JFP to characterize the homogeneity of functionalized surfaces at the nanoscale.

18.
Chemistry ; 21(13): 5023-33, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25736590

RESUMEN

Despite the contribution of changes in pancreatic ß-cell mass to the development of all forms of diabetes mellitus, few robust approaches currently exist to monitor these changes prospectively in vivo. Although magnetic-resonance imaging (MRI) provides a potentially useful technique, targeting MRI-active probes to the ß cell has proved challenging. Zinc ions are highly concentrated in the secretory granule, but they are relatively less abundant in the exocrine pancreas and in other tissues. We have therefore developed functional dual-modal probes based on transition-metal chelates capable of binding zinc. The first of these, Gd⋅1, binds Zn(II) directly by means of an amidoquinoline moiety (AQA), thus causing a large ratiometric Stokes shift in the fluorescence from λem =410 to 500 nm with an increase in relaxivity from r1 =4.2 up to 4.9 mM(-1) s(-1) . The probe is efficiently accumulated into secretory granules in ß-cell-derived lines and isolated islets, but more poorly by non-endocrine cells, and leads to a reduction in T1 in human islets. In vivo murine studies of Gd⋅1 have shown accumulation of the probe in the pancreas with increased signal intensity over 140 minutes.


Asunto(s)
Diabetes Mellitus/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Células Secretoras de Insulina/diagnóstico por imagen , Elementos de la Serie de los Lantanoides/química , Espectroscopía de Resonancia Magnética/métodos , Zinc/química , Animales , Células HEK293 , Humanos , Ratones , Estructura Molecular , Radiografía
19.
Inorg Chem ; 54(5): 2204-12, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25691212

RESUMEN

The synthesis and characterization of novel scandium and yttrium phosphasalen complexes is reported, where phosphasalen refers to two different bis(iminophosphorane) derivatives of the more ubiquitous salen ligands. The activity of the complexes as initiators for the ring-opening polymerization of cyclic esters is presented. The scandium complexes are inactive for lactide polymerization but slow and controlled initiators for ε-caprolactone polymerization. The lack of activity toward lactide exhibited by these compounds is probed, and a rare example of single-monomer insertion product, unable to undergo further reactions with lactide, is identified. In contrast, the analogous yttrium phosphasalen complex is a very active initiator for the ring-opening polymerization of rac-lactide (kobs = 1.5 × 10(-3) s(-1) at 1:500 [yttrium initiator]:[rac-lactide], 1 M overall concentration of lactide in THF at 298 K). In addition to being a very fast initiator, the yttrium complex also maintains excellent levels of polymerization control and a high degree of isoselectivity, with the probability of isotactic enchainment being Pi = 0.78 at 298 K.

20.
Phys Chem Chem Phys ; 17(3): 1562-6, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25460350

RESUMEN

The immobilisation of electrocatalysts for CO2 reduction onto light harvesting semiconductors is proposed to be an important step towards developing more efficient CO2 reduction photoelectrodes. Here, we report a low cost nickel cyclam complex covalently anchored to a metal oxide surface. Using transient spectroscopy we validate the role of surface immobilisation on enhancing the rate of photoelectron transfer. Furthermore [Ni(1,4,8,11-tetraazacyclotetradecane-6-carboxylic acid)](2+) (2) is shown to be a very active electrocatalyst in solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA