Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunol Cell Biol ; 101(4): 305-320, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36658328

RESUMEN

Genital Chlamydia trachomatis infection remains a major health issue as it causes severe complications including pelvic inflammatory disease, ectopic pregnancy and infertility in females as a result of infection-associated chronic inflammation. Podoplanin, a transmembrane receptor, has been previously reported on inflammatory macrophages. Thus, strategies that specifically target podoplanin might be able to reduce local inflammation. This study investigated the expression level and function of podoplanin in a C. trachomatis infection model. C57BL/6 mice infected with the mouse pathogen Chlamydia muridarum were examined intermittently from days 1 to 60 using flow cytometry analysis. Percentages of conventional macrophages (CD11b+ CD11c- F4/80+ ) versus inflammatory macrophages (CD11b+ CD11c+ F4/80+ ), and the expression of podoplanin in these cells were investigated. Subsequently, a podoplanin-knockout RAW264.7 cell was used to evaluate the function of podoplanin in C. trachomatis infection. Our findings demonstrated an increased CD11b+ cell volume in the spleen at day 9 after the infection, with augmented podoplanin expression, especially among the inflammatory macrophages. A large number of podoplanin-expressing macrophages were detected in the genital tract of C. muridarum-infected mice. Furthermore, analysis of the C. trachomatis-infected patients demonstrated a higher percentage of podoplanin-expressing monocytes than that in the noninfected controls. Using an in vitro infection in a transwell migration assay, we identified that macrophages deficient in podoplanin displayed defective migratory function toward C. trachomatis-infected HeLa 229 cells. Lastly, using immunoprecipitation-mass spectrometry method, we identified two potential podoplanin interacting proteins, namely, Cofilin 1 and Talin 1 actin-binding proteins. The present study reports a role of podoplanin in directing macrophage migration to the chlamydial infection site. Our results suggest a potential for reducing inflammation in individuals with chronic chlamydial infections by targeting podoplanin.


Asunto(s)
Infecciones por Chlamydia , Macrófagos , Glicoproteínas de Membrana , Animales , Femenino , Humanos , Ratones , Embarazo , Chlamydia muridarum , Chlamydia trachomatis/fisiología , Células HeLa , Inflamación , Ratones Endogámicos C57BL , Glicoproteínas de Membrana/metabolismo , Células RAW 264.7
2.
BMC Microbiol ; 23(1): 58, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870960

RESUMEN

BACKGROUND: Genital Chlamydia trachomatis infection is the most common bacterial sexual transmitted disease that causes severe complications including pelvic inflammatory disease, ectopic pregnancy, and infertility in females. The Pgp3 protein encoded by C. trachomatis plasmid has been speculated to be an important player in chlamydial pathogenesis. However, the precise function of this protein is unknown and thus remains to be thoroughly investigated. METHODS: In this study, we synthesized Pgp3 protein for in vitro stimulation in the Hela cervical carcinoma cells. RESULTS AND CONCLUSION: We showed that Pgp3 induced prominent expression of host inflammatory cytokine genes including interleukin-6 (IL-6), IL-8, tumor necrosis factor alpha-induced protein 3 (TNFAIP3), and chemokine C-X-C motif ligand 1 (CXCL1), implying a possible role of Pgp3 in modulating the inflammatory reaction in the host.


Asunto(s)
Carcinoma , Infecciones por Chlamydia , Femenino , Embarazo , Humanos , Chlamydia trachomatis , Células Epiteliales , Células HeLa
3.
Medicina (Kaunas) ; 59(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37109736

RESUMEN

Transdermal patches are a non-invasive method of drug administration. It is an adhesive patch designed to deliver a specific dose of medication through the skin and into the bloodstream throughout the body. Transdermal drug delivery has several advantages over other routes of administration, for instance, it is less invasive, patient-friendly, and has the ability to bypass first-pass metabolism and the destructive acidic environment of the stomach that occurs upon the oral ingestion of drugs. For decades, transdermal patches have attracted attention and were used to deliver drugs such as nicotine, fentanyl, nitroglycerin, and clonidine to treat various diseases or conditions. Recently, this method is also being explored as a means of delivering biologics in various applications. Here, we review the existing literatures on the design and usage of medical patches in transdermal drug delivery, with a focus on the recent advances in innovation and technology that led to the emergence of smart, dissolvable/biodegradable, and high-loading/release, as well as 3D-printed patches.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Humanos , Administración Cutánea , Piel/metabolismo , Preparaciones Farmacéuticas , Fentanilo , Parche Transdérmico
4.
Cell Immunol ; 380: 104594, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36081178

RESUMEN

Antibody secreting plasma cell plays an indispensable role in humoral immunity. As activated B cell undergoes germinal center reaction and develops into plasma cell, it gradually loses B cell characteristics and embraces functional changes associated with immunoglobulins production. Differentiation of B cell into plasma cell involves drastic changes in cell structure, granularity, metabolism, gene expression and epigenetic regulation that couple with the mounting capacity for synthesis of a large quantity of antigen-specific antibodies. The interplay between three hallmark transcriptional regulators IRF4, BLIMP1, and XBP1, is critical for supporting the cellular reprograming activities during B to plasma cell transition. IRF4 promotes plasma cell generation by directing immunoglobulin class switching, proliferation and survival; BLIMP1 serves as a transcriptional repressor that extinguishes B cell features; whereas XBP1 controls unfolded protein response that relieves endoplasmic reticulum stress and permits antibody release during terminal differentiation. Intriguingly, high expression of IRF4, BLIMP1, and XBP1 molecules have been reported in myeloma cells derived from multiple myeloma patients, which negatively impact treatment outcome, prognosis, and relapse frequency. Despite the introduction of immunomodulatory drugs in recent years, multiple myeloma is still an incurable disease with poor survival rate. An in-depth review of IRF4, BLIMP1, and XBP1 triad molecules in plasma cell generation and multiple myeloma tumorigenesis may provide clues to the possibility of targeting these molecules in disease management.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Mieloma Múltiple , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Linfocitos B , Diferenciación Celular , Epigénesis Genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Recurrencia Local de Neoplasia , Células Plasmáticas
5.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886908

RESUMEN

Helicobacter pylori is one of the most successful gastric pathogens that has co-existed with human for centuries. H. pylori is recognized by the host immune system through human pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream signaling pathways. Following bacterial recognition, the first responders of the innate immune system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through phagocytic and inflammatory reaction. This review provides current understanding of the interaction between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by PRRs, and the subsequent signaling pathway activation in host innate immune cells.


Asunto(s)
Helicobacter pylori , Helicobacter pylori/metabolismo , Humanos , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Receptores Toll-Like/metabolismo
6.
BMC Immunol ; 19(1): 32, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30409128

RESUMEN

BACKGROUND: IL-17A has emerged as a key player in the pathologies of inflammation, autoimmune disease, and immunity to microbes since its discovery two decades ago. In this study, we aim to elucidate the activity of IL-17A in the protection against Cryptococcus neoformans, an opportunistic fungus that causes fatal meningoencephalitis among AIDS patients. For this purpose, we examined if C. neoformans infection triggers IL-17A secretion in vivo using wildtype C57BL/6 mice. In addition, an enhanced green fluorescence protein (EGFP) reporter and a knockout (KO) mouse models were used to track the source of IL-17A secretion and explore the protective function of IL-17A, respectively. RESULTS: Our findings showed that in vivo model of C. neoformans infection demonstrated induction of abundant IL-17A secretion. By examining the lung bronchoalveolar lavage fluid (BALF), mediastinal lymph node (mLN) and spleen of the IL-17A-EGFP reporter mice, we showed that intranasal inoculation with C. neoformans promoted leukocytes lung infiltration. A large proportion (~ 50%) of the infiltrated CD4+ helper T cell population secreted EGFP, indicating vigorous TH17 activity in the C. neoformans-infected lung. The infection study in IL-17A-KO mice, on the other hand, revealed that absence of IL-17A marginally boosted fungal burden in the lung and accelerated the mouse death. CONCLUSION: Therefore, our data suggest that IL-17A is released predominantly from TH17 cells in vivo, which plays a supporting role in the protective immunity against C. neoformans infection.


Asunto(s)
Criptococosis/inmunología , Cryptococcus neoformans/inmunología , Interleucina-17/biosíntesis , Enfermedades Pulmonares Fúngicas/inmunología , Células Th17/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bazo/inmunología
7.
Semin Cancer Biol ; 40-41: 35-47, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27038646

RESUMEN

The association between chronic inflammation and cancer development has been well documented. One of the major obstacles in cancer treatment is the persistent autocrine and paracrine activation of pro-inflammatory transcription factors such as nuclear factor-κB, signal transducer and activator of transcription 3, activator protein 1, fork head box protein M1, and hypoxia-inducible factor 1α in a wide variety of tumor cell lines and patient specimens. This, in turn, leads to an accelerated production of cellular adhesion molecules, inflammatory cytokines, chemokines, anti-apoptotic molecules, and inducible nitric oxide synthase. Numerous medicinal plant-derived compounds have made a tremendous impact in drug discovery research endeavors, and have been reported to modulate the activation of diverse oncogenic transcription factors in various tumor models. Moreover, novel therapeutic combinations of standard chemotherapeutic drugs with these agents have significantly improved patient survival by making cancer cells more susceptible to chemotherapy and radiotherapy. In this review, we critically analyze the existing literature on the modulation of diverse transcription factors by various natural compounds and provide views on new directions for accelerating the discovery of novel drug candidates derived from Mother Nature.


Asunto(s)
Anticarcinógenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Neoplasias/prevención & control , Factores de Transcripción/metabolismo , Animales , Anticarcinógenos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Transducción de Señal/efectos de los fármacos
8.
Biochim Biophys Acta Gen Subj ; 1861(2): 296-306, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27750041

RESUMEN

BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process. METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion. RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6. CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway. GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Interleucina-6/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Invasividad Neoplásica/patología , Neoplasias Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Comunicación Paracrina/fisiología , Cicatrización de Heridas/fisiología
9.
Proteomics ; 16(9): 1347-60, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27134121

RESUMEN

Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.


Asunto(s)
Chlamydia trachomatis/crecimiento & desarrollo , Factor 2 Eucariótico de Iniciación/genética , Interacciones Huésped-Patógeno , Serina-Treonina Quinasas TOR/genética , Ataxina-10/genética , Ataxina-10/metabolismo , Chlamydia trachomatis/patogenicidad , Cromatografía Liquida , Factor 2 Eucariótico de Iniciación/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Redes y Vías Metabólicas/genética , Proteómica/métodos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal , Coloración y Etiquetado/métodos , Serina-Treonina Quinasas TOR/metabolismo , Espectrometría de Masas en Tándem , Factores de Tiempo
10.
BMC Microbiol ; 16: 45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26987367

RESUMEN

BACKGROUND: The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis-infected patients. RESULTS: A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27-35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1% (92/180). Of the 92 chlamydia-infected patients, 93.5% (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5% (6/92) were caused by the plasmid-free (-) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (-) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. CONCLUSION: Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (-) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.


Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/aislamiento & purificación , Plásmidos/genética , Adulto , Chlamydia trachomatis/clasificación , Chlamydia trachomatis/metabolismo , Estudios de Cohortes , Femenino , Ginecología/estadística & datos numéricos , Humanos , Malasia/epidemiología , Obstetricia/estadística & datos numéricos , Plásmidos/metabolismo , Embarazo , Prevalencia
11.
Org Biomol Chem ; 14(9): 2665-70, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26831779

RESUMEN

A novel BODIPY derivative was designed for biomedical applications. Its mono-quaternized structure ensured its water-solubility and suitable amphiphilicity. Showing no singlet oxygen generation to avoid damage to healthy cells, this new derivative proved to be an extremely promising antimicrobial agent, with activity equal or superior to ampicillin against MRS Staphylococcus strains with no short-term resistance issue. Its activity against MSS Staphylococcus strains was largely superior to those of ampicillin and reached the activity of vancomycin against MSS S. epidermidis. This latter result is in particular extremely promising for the treatment of hospital-acquired infections. Also the fluorescence properties of BODIPY allowed imaging of the uptake.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Boro/química , Compuestos de Boro/farmacología , Staphylococcus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Compuestos de Boro/síntesis química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Staphylococcus/clasificación , Relación Estructura-Actividad
12.
Int J Med Sci ; 13(5): 374-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27226778

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; ß-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Animales , Neoplasias Colorrectales/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonas/farmacología , Flavonas/uso terapéutico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Humanos , Transducción de Señal/efectos de los fármacos
13.
Eur J Immunol ; 44(3): 894-904, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24310293

RESUMEN

Runx1 transcription factor is a key player in the development and function of T cells. Runx1 transcripts consist of two closely related isoforms (proximal and distal Runx1) whose expressions are regulated by different promoters. Which Runx1 isoform is expressed appears to be tightly regulated. The regulatory mechanism for differential transcription is, however, not fully understood. In this study, we investigated the regulation of the proximal Runx1 promoter in T cells. We showed that proximal Runx1 was expressed at a low level in naïve T cells from C57BL/6 mice, but its expression was remarkably induced upon T-cell activation. In the promoter of proximal Runx1, a highly conserved region was identified which spans from -412 to the transcription start site and harbors a NFAT binding site. In a luciferase reporter assay, this region was found to be responsive to T-cell activation through Lck and calcineurin pathways. Mutagenesis studies and chromatin immunoprecipitation assay indicated that the NFAT site was essential for NFAT binding and transactivation of the proximal Runx1 promoter. Furthermore, TCR signaling-induced expression of proximal Runx1 was blocked by treatment of cells with cyclosporin A. Together, these results demonstrate that the calcineurin-NFAT pathway regulates proximal Runx1 transcription upon TCR stimulation.


Asunto(s)
Calcineurina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factores de Transcripción NFATC/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Activación Transcripcional , Animales , Sitios de Unión , Secuencia Conservada , Ciclosporina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Mutación , Factores de Transcripción NFATC/genética , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Linfocitos T/inmunología , Linfocitos T/metabolismo
14.
BMC Microbiol ; 15: 144, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26209099

RESUMEN

BACKGROUND: The aim of this study was to investigate the prevalence and characterization of Listeria species and Listeria monocytogenes isolated from raw fish and open-air fish market environments. Eight hundred and sixty two samples including raw fish and fish market environments (samples from workers' hands, workers' knives, containers and work surface) were collected from the open-air fish markets in the Northern region of Iran. RESULTS: Listeria spp. was isolated from 104/488 (21.3%) raw fish and 29/374 (7.8%) of samples from open-air fish market environment. The isolates of Listeria spp. included L. innocua (35.3%), L. monocytogenes (32.3%), L. seeligeri (18%), and L. ivanovii (14.3%). Of the 43 L. monocytogenes isolates, 31 (72.1%), 10 (23.3%) and 2 (4.7%) belonged to serovars 1/2a, 4b, and 1/2b, respectively. The inlA, inlB, inlC, inlJ, actA, hlyA, iap, plcA, and prfA virulence-associated genes were detected in almost all of the L. monocytogenes isolates. The Listeria spp. isolates showed high resistance against tetracycline (23.3%), penicillin G, and cephalothin (each 16.5%). Besides, we observed significant resistance level to tetracycline (27.9%), ampicillin (20.9%), cephalothin, penicillin G, and streptomycin (each 16.3%) in the L. monocytogenes isolates. All of the isolates were susceptible to cefotaxime, gentamicin, kanamycin, and pefloxacin. We found that tetM (25.6%), tetA (23.3%), ampC (14%), and penA (11.6%) were the most prevalent antibiotic resistance genes in the L. monocytogenes isolates. CONCLUSIONS: Recovery of potentially pathogenic L. monocytogenes from raw fish and environment of open-air fish market samples in this study is a convincing evidence for the zoonotic potential of listeriosis.


Asunto(s)
Microbiología Ambiental , Microbiología de Alimentos , Listeria/clasificación , Listeria/aislamiento & purificación , Animales , Farmacorresistencia Microbiana , Peces , Irán , Listeria/genética , Prevalencia , Factores de Virulencia/genética
15.
Int Immunol ; 26(6): 341-52, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24402308

RESUMEN

Mutations in the gene encoding the Wiskott-Aldrich syndrome protein (WASP) are responsible for Wiskott-Aldrich syndrome and WASP is a major actin regulator in the cytoplasm. Although rare gain-of-function mutations in the WASP gene are known to result in X-linked neutropenia (XLN), the molecular pathogenesis of XLN is not fully understood. In this study, we showed that all reported constitutively activating mutants (L270P, S272P and I294T) of WASP were hyperphosphorylated by Src family tyrosine kinases and demonstrated higher actin polymerization activities compared with wild-type (WT) WASP. Further analysis showed a tendency of activating WASP mutants to localize in the nucleus compared with WT or the Y291F mutant of WASP. In addition, we found that WASP could form a complex with nuclear RNA-binding protein, 54 kDa (p54nrb) and RNA polymerase II (RNAP II). ChIP assays revealed that WASP associated with DNA, although the affinity was relatively weaker than RNAP II. To determine whether gene transcription was affected by WASP mutation in myeloid cells, we performed microarray analysis and found different expression profiles between WT and L270P WASP-transfected K562 cells. Among the genes affected, granulocyte colony-stimulating factor receptor, Runx1, and protein tyrosine phosphatase receptor c were included. ChIP on chip analysis of genomic DNA showed WT and L270P WASP had a highly similar DNA-binding pattern but differed in binding affinity at the same locus. Therefore, our results suggest that the open conformation of WASP regulates its nuclear localization and plays requisite roles in regulating gene transcription that would contribute to the outcome in the nucleus of myeloid cells.


Asunto(s)
Núcleo Celular/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células Mieloides/fisiología , Neutropenia/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Síndrome de Wiskott-Aldrich/genética , Actinas/metabolismo , Proteínas de Unión al ADN , Humanos , Células K562 , Análisis por Micromatrices , Mutación/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/metabolismo , Unión Proteica/genética , Conformación Proteica , Transporte de Proteínas/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional/genética , Proteína del Síndrome de Wiskott-Aldrich/química , Proteína del Síndrome de Wiskott-Aldrich/genética
16.
BMC Complement Altern Med ; 15: 15, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652758

RESUMEN

BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells. METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins. RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 µg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression. CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Curcuma/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Neoplasias del Colon/metabolismo , Citocromos c/metabolismo , Células HT29 , Humanos , Masculino , Extractos Vegetales/química , Extractos Vegetales/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Rizoma , Transducción de Señal/efectos de los fármacos , Zingiberaceae , Proteína X Asociada a bcl-2/metabolismo
17.
J Immunol ; 188(11): 5408-20, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22551552

RESUMEN

The Runx1 transcription factor is abundantly expressed in naive T cells but rapidly downregulated in activated T cells, suggesting that it plays an important role in a naive stage. In the current study, Runx1(-/-)Bcl2(tg) mice harboring Runx1-deleted CD4(+) T cells developed a fatal autoimmune lung disease. CD4(+) T cells from these mice were spontaneously activated, preferentially homed to the lung, and expressed various cytokines, including IL-17 and IL-21. Among these, the deregulation of IL-21 transcription was likely to be associated with Runx binding sites located in an IL-21 intron. IL-17 produced in Runx1-deleted cells mobilized innate immune responses, such as those promoted by neutrophils and monocytes, whereas IL-21 triggered humoral responses, such as plasma cells. Thus, at an initial stage, peribronchovascular regions in the lung were infiltrated by CD4(+) lymphocytes, whereas at a terminal stage, interstitial regions were massively occupied by immune cells, and alveolar spaces were filled with granular exudates that resembled pulmonary alveolar proteinosis in humans. Mice suffered from respiratory failure, as well as systemic inflammatory responses. Our data indicate that Runx1 plays an essential role in repressing the transcription of cytokine genes in naive CD4(+) T cells and, thereby, maintains cell quiescence.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/deficiencia , Enfermedades Pulmonares/inmunología , Activación de Linfocitos/inmunología , Animales , Enfermedades Autoinmunes/mortalidad , Enfermedades Autoinmunes/patología , Linfocitos T CD4-Positivos/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Citocinas/antagonistas & inhibidores , Citocinas/genética , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/mortalidad , Células Jurkat , Enfermedades Pulmonares/mortalidad , Enfermedades Pulmonares/patología , Activación de Linfocitos/genética , Ratones , Ratones Transgénicos , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología
18.
BMC Complement Altern Med ; 14: 378, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25283308

RESUMEN

BACKGROUND: Curcuma purpurascens BI. is a medicinal plant from the Zingiberaceae family, which is widely used as a spice and as folk medicine. The aim of the present study is to investigate the gastroprotective activity of C. purpurascens rhizome hexane extract (CPRHE) against ethanol- induced gastric ulcers in rats. METHODS: Acute toxicity test was carried out on 36 rats (18 males and 18 females) with low dose of CPRHE (1 g/kg), high dose of CPRHE (2 g/kg) and vehicle (5% Tween 20). To determine the gastroprotective effect of CPRHE, gastric juice acidity, gross and histological gastric lesions, mucus content and ulcer index were evaluated in ethanol-induced ulcer in rats. In addition, superoxide dismutase activity, nitric oxide level and immunohistochemical evaluation of Bax and HSP70 proteins were examined. RESULTS: The CPRHE acute toxicity test on rats did not reveal any signs of mortality and toxicity up to 2 g/kg. The oral administration of CPRHE at doses of 200 mg/kg and 400 mg/kg and omeprazole (positive control) at a dose of 20 mg/kg to rats remarkably attenuated gastric lesions induced by ethanol. Pre-treatment of rats with CPRHE significantly replenished the depletion of mucus content caused by ethanol administration and decreased the acidity of gastric walls. Further examination of gastric mucosal homogenate revealed significant elevation of superoxide dismutase and nitric oxide activities and reduction in malondialdehyde level in CPRHE-treated group, compared to the lesion control group. Histological assessment of gastric walls obtained from rats pre-treated with CPRHE demonstrated a noteworthy decrease in hemorrhagic mucosal lesions. Immunohistochemical staining showed down-regulation of Bax protein and up-regulation of Hsp70 protein. CONCLUSION: Taken together, these findings confirmed the gastroprotective effect of Curcuma purpurascens rhizome against gastric damage.


Asunto(s)
Curcuma/química , Mucosa Gástrica/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Sustancias Protectoras/farmacología , Sustancias Protectoras/toxicidad , Animales , Femenino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Masculino , Extractos Vegetales/química , Sustancias Protectoras/química , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda
19.
ScientificWorldJournal ; 2014: 212096, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25548779

RESUMEN

Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Quinazolinas/síntesis química , Quinazolinas/farmacología , Absorción Fisicoquímica , Animales , Antineoplásicos/química , Antineoplásicos/toxicidad , Espectroscopía de Resonancia Magnética con Carbono-13 , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Luminiscencia , Células MCF-7 , Ratones , Microscopía Fluorescente , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Transporte de Proteínas , Espectroscopía de Protones por Resonancia Magnética , Quinazolinas/química , Quinazolinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Infrarroja , Factores de Tiempo , Pruebas de Toxicidad Aguda
20.
ScientificWorldJournal ; 2014: 321943, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25126594

RESUMEN

Curcuma zedoaria also known as Temu putih is traditionally used in food preparations and treatment of various ailments including cancer. The cytotoxic activity of hexane, dichloromethane, ethyl acetate, methanol, and the methanol-soxhlet extracts of Curcuma zedoaria rhizomes was tested on two human cancer cell lines (Ca Ski and MCF-7) and a noncancer cell line (HUVEC) using MTT assay. Investigation on the chemical components in the hexane and dichloromethane fractions gave 19 compounds, namely, labda-8(17),12 diene-15,16 dial (1), dehydrocurdione (2), curcumenone (3), comosone II (4), curcumenol (5), procurcumenol (6), germacrone (7), zerumbone epoxide (8), zederone (9), 9-isopropylidene-2,6-dimethyl-11-oxatricyclo[6.2.1.0(1,5)]undec-6-en-8-ol (10), furanodiene (11), germacrone-4,5-epoxide (12), calcaratarin A (13), isoprocurcumenol (14), germacrone-1,10-epoxide (15), zerumin A (16), curcumanolide A (17), curcuzedoalide (18), and gweicurculactone (19). Compounds (1-19) were evaluated for their antiproliferative effect using MTT assay against four cancer cell lines (Ca Ski, MCF-7, PC-3, and HT-29). Curcumenone (3) and curcumenol (5) displayed strong antiproliferative activity (IC50 = 8.3 ± 1.0 and 9.3 ± 0.3 µg/mL, resp.) and were found to induce apoptotic cell death on MCF-7 cells using phase contrast and Hoechst 33342/PI double-staining assay. Thus, the present study provides basis for the ethnomedical application of Curcuma zedoaria in the treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Curcuma/química , Fitoterapia/métodos , Extractos Vegetales/farmacología , Rizoma/química , Análisis de Varianza , Cromatografía en Capa Delgada , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Indonesia , Células MCF-7 , Malasia , Microscopía Fluorescente , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Sales de Tetrazolio , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA