Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Front Zool ; 18(1): 51, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583721

RESUMEN

BACKGROUND: Sexual selection has been considered to promote diversification and speciation. Sexually dimorphic species have been used to explore the supposed effect, however, with mixed results. In dwarf spiders (Erigoninae), many species are sexually dimorphic-males possess marked prosomal modifications. These male traits vary from moderate elevations to bizarre shapes in various prosomal regions. Previous studies established that male dwarf spiders produce substances in these prosomal modifications that are taken up by the females. These substances can act as nuptial gifts, which increase the mating probability of males and the oviposition rate in females. Therefore, these dimorphic traits have evolved in the context of sexual selection. Here, we explore the evolutionary lability of this gustatory trait complex with the aim of assessing the role of this trait complex in species divergence by investigating (1) if erigonine modified prosomata are inherently linked to nuptial-gift-producing glands, (2) if the evolution of the glands evolution preceded that of the modified prosomal shapes, and by assessing (3) the occurrence of convergent/divergent evolution and cryptic differentiation. RESULTS: We reconstructed the position and extent of the glandular tissue along with the muscular anatomy in the anterior part of the prosoma of 76 erigonine spiders and three outgroup species using X-ray micro-computed tomography. In all but one case, modified prosomata are associated with gustatory glands. We incorporated the location of glands and muscles into an existing matrix of somatic and genitalic morphological traits of these taxa and reanalyzed their phylogenetic relationship. Our analysis supports that the possession of glandular equipment is the ancestral state and that the manifold modifications of the prosomal shape have evolved convergently multiple times. We found differences in gland position between species with both modified and unmodified prosomata, and reported on seven cases of gland loss. CONCLUSIONS: Our findings suggest that the occurrence of gustatory glands in sexually monomorphic ancestors has set the stage for the evolution of diverse dimorphic external modifications in dwarf spiders. Differences among congeners suggest that the gland position is highly susceptible to evolutionary changes. The multiple incidences might reflect costs of glandular tissue maintenance and nuptial feeding. Our results indicate divergent evolutionary patterns of gustatory-courtship-related traits, and thus a likely facilitating effect of sexual selection on speciation.

2.
Cladistics ; 33(6): 574-616, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34724759

RESUMEN

We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S, COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher-level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb-weavers, compatible with their non-monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius, Tasmabrochus and Teeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to include Calymmaria, Cryphoeca, Ethobuella and Willisius (transferred from Hahniidae), and Blabomma and Yorima (transferred from Dictynidae). Cycloctenidae are redefined to include Orepukia (transferred from Agelenidae) and Pakeha and Paravoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, with Amphinecta, Mamoea, Maniho, Paramamoea and Rangitata (transferred from Amphinectidae); Ischaleinae, with Bakala and Manjala (transferred from Amaurobiidae) and Ischalea (transferred from Stiphidiidae); Metaltellinae, with Austmusia, Buyina, Calacadia, Cunnawarra, Jalkaraburra, Keera, Magua, Metaltella, Penaoola and Quemusia; Porteriinae (new rank), with Baiami, Cambridgea, Corasoides and Nanocambridgea (transferred from Stiphidiidae); and Desinae, with Desis, and provisionally Poaka (transferred from Amaurobiidae) and Barahna (transferred from Stiphidiidae). Argyroneta is transferred from Cybaeidae to Dictynidae. Cicurina is transferred from Dictynidae to Hahniidae. The genera Neoramia (from Agelenidae) and Aorangia, Marplesia and Neolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, with Gasparia, Gohia, Hulua, Neomyro, Myro, Ommatauxesis and Otagoa (transferred from Desidae); and Toxopinae, with Midgee and Jamara, formerly Midgeeinae, new syn. (transferred from Amaurobiidae) and Hapona, Laestrygones, Lamina, Toxops and Toxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the "ctenids" Ancylometes and Cupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae. Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae (new fam., including Xenoctenus, Paravulsor and Odo, transferred from Miturgidae, as well as Incasoctenus from Ctenidae). We confirm the inclusion of Zora (formerly Zoridae) within Miturgidae.

3.
Proc Biol Sci ; 279(1732): 1341-50, 2012 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-22048955

RESUMEN

In order to study the tempo and the mode of spider orb web evolution and diversification, we conducted a phylogenetic analysis using six genetic markers along with a comprehensive taxon sample. The present analyses are the first to recover the monophyly of orb-weaving spiders based solely on DNA sequence data and an extensive taxon sample. We present the first dated orb weaver phylogeny. Our results suggest that orb weavers appeared by the Middle Triassic and underwent a rapid diversification during the end of the Triassic and Early Jurassic. By the second half of the Jurassic, most of the extant orb-weaving families and web designs were already present. The processes that may have given origin to this diversification of lineages and web architectures are discussed. A combination of biotic factors, such as key innovations in web design and silk composition, as well as abiotic environmental changes, may have played important roles in the diversification of orb weavers. Our analyses also show that increased taxon sampling density in both ingroups and outgroups greatly improves phylogenetic accuracy even when extensive data are missing. This effect is particularly important when addition of character data improves gene overlap.


Asunto(s)
Evolución Molecular , Arañas/genética , Arañas/fisiología , Animales , Fósiles , Marcadores Genéticos , Filogenia , Seda/genética , Seda/fisiología , Arañas/clasificación
4.
Cladistics ; 27(3): 278-330, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34875780

RESUMEN

The limits and the interfamilial relationships of the minute orb-weaving symphytognathoid spiders have remained contentious and poorly understood. The circumscription and diagnosis of the symphytognathoid family Mysmenidae have always been elusive, and its monophyly has never been thoroughly tested. We combine sequence data from six genes with a morphological dataset in a total-evidence phylogenetic analysis (ca. 6100 characters, 109 taxa: 74 mysmenids), and explore the phylogenetic signal of the combined dataset, individual genes, and gene combinations with different parsimony methods and model-based approaches. Several support values and parameter-sensitivity schemes are explored to assess stability of clades. Mysmenidae monophyly is supported by ca. 20 morphological and ca. 420 molecular synapomorphies. Mysmenidae is monophyletic under all combined analyses that include morphology. Almost no gene or gene combination supports Mysmenidae monophyly. Symphytognathoids are delimited to include: (Theridiosomatidae (Mysmenidae (Synaphridae (Anapidae + Symphytognathidae)))). Micropholcommatids are a lineage nested within the anapid clade and thus are synonymized with Anapidae (Micropholcommatinae New Rank). We provide morphological diagnoses for all symphytognathoid families and discuss the behavioural evolutionary implications of our hypotheses of relationships. The planar orb web evolved independently twice from three-dimensional webs. The orb web was modified into sheet or cobwebs three times independently. The spherical mysmenine web has a single origin. Kleptoparasitism evolved once in mysmenids. We comment on the discrepancies and lack of resolving power of the molecular datasets relative to the morphological signal, and discuss the relevance of morphology in inferring the total-evidence phylogenetic pattern of relationships. © The Willi Hennig Society 2010.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA