Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 39(2): 224-236, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30580571

RESUMEN

Objective- PDI (protein disulfide isomerase A1) was reported to support Nox1 (NADPH oxidase) activation mediated by growth factors in vascular smooth muscle cells. Our aim was to investigate the molecular mechanism by which PDI activates Nox1 and the functional implications of PDI in Nox1 activation in vascular disease. Approach and Results- Using recombinant proteins, we identified a redox interaction between PDI and the cytosolic subunit p47phox in vitro. Mass spectrometry of crosslinked peptides confirmed redox-dependent disulfide bonds between cysteines of p47phox and PDI and an intramolecular bond between Cys 196 and 378 in p47phox. PDI catalytic Cys 400 and p47phox Cys 196 were essential for the activation of Nox1 by PDI in vascular smooth muscle cells. Transfection of PDI resulted in the rapid oxidation of a redox-sensitive protein linked to p47phox, whereas PDI mutant did not promote this effect. Mutation of p47phox Cys 196, or the redox active cysteines of PDI, prevented Nox1 complex assembly and vascular smooth muscle cell migration. Proximity ligation assay confirmed the interaction of PDI and p47phox in murine carotid arteries after wire injury. Moreover, in human atheroma plaques, a positive correlation between the expression of PDI and p47phox occurred only in PDI family members with the a' redox active site. Conclusions- PDI redox cysteines facilitate Nox1 complex assembly, thus identifying a new mechanism through which PDI regulates Nox activity in vascular disease.


Asunto(s)
Disulfuros/química , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 1/metabolismo , NADPH Oxidasas/química , Proteína Disulfuro Isomerasas/química , Animales , Movimiento Celular , Células Cultivadas , Activación Enzimática , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Oxidación-Reducción , Superóxidos/metabolismo
2.
Med Mycol ; 58(3): 372-379, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31226713

RESUMEN

The filamentous fungus Trichophyton rubrum is a pathogen that causes superficial mycoses in humans, predominantly in keratinized tissues. The occurrence of dermatophytoses has increased in the last decades, mainly in immunocompromised patients, warranting research on the mechanisms involved in dermatophyte virulence. The genomes of dermatophytes are known to be enriched in genes coding for proteins containing the LysM domain, a carbohydrate-binding module, indicating the possible involvement of these genes in virulence. Although the LysM domains have already been described in other fungi, their biological functions in dermatophytes are unknown. Here we assessed the transcription of genes encoding proteins containing the LysM domains in T. rubrum grown on different substrates using quantitative real-time polymerase chain reaction. Some of these genes showed changes in transcription levels when T. rubrum was grown on keratin. In silico analyses suggest that some of these proteins share features, namely, they are anchored in the plasma membrane and contain the catalytic domain chitinase II and signal peptide domains. Here we show a detailed study of genes encoding the proteins with LysM-containing domains in T. rubrum, aiming to contribute to the understanding of their functions in dermatophytes.


Asunto(s)
Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Trichophyton/crecimiento & desarrollo , Trichophyton/genética , Metabolismo de los Hidratos de Carbono , Quitinasas/genética , Biología Computacional , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Humanos , Queratinas , Señales de Clasificación de Proteína/genética , Tiña/microbiología
3.
Planta Med ; 83(11): 912-920, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28264205

RESUMEN

This is a comparative study on the intraspecific chemical variability of Aristolochia cordigera species, collected in two different regions of Brazil, Biome Cerrado (semiarid) and Biome Amazônia (coastal). The use of GC-MS and statistical methods led to the identification of 56 compounds. A higher percentage of palmitone and germacrene-D in the hexanes extracts of the leaves of plants from these respective biomes was observed. Phytochemical studies on the extracts led to the isolation and identification of 19 known compounds, including lignans, neolignans, aristolochic acids, indole-ß-carboline, and indole alkaloids. In addition, two new indole alkaloids, 3,4-dihydro-hyrtiosulawesine and 6-O-(ß-glucopyranosyl)hyrtiosulawesine, were isolated and a new neolignan, cis-eupomatenoid-7, was obtained in a mixture with its known isomer eupomatenoid-7. Their structures were determined by spectroscopic methods, mainly by 1D- and 2D-NMR. The occurrence of indole alkaloids is being described for the first time in the Aristolochiaceae family. Moreover, the in vitro susceptibility of intracellular amastigote and promastigote forms of Leishmania amazonensis to the alkaloids and eupomatenoid-7 were evaluated. This neolignan exhibited low activity against promastigotes (IC50 = 46 µM), while the alkaloids did not show inhibitory activity. The new alkaloid 6-O-(ß-glucopyranosyl)hyrtiosulawesine exhibited activity in the low micromolar range against Plasmodium falciparum, with an IC50 value of 5 µM and a selectivity index higher than 50.


Asunto(s)
Antiprotozoarios/farmacología , Aristolochia/química , Citotoxinas/farmacología , Alcaloides Indólicos/farmacología , Lignanos/farmacología , Extractos Vegetales/farmacología , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Brasil , Línea Celular Tumoral , Citotoxinas/química , Citotoxinas/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Leishmania/efectos de los fármacos , Lignanos/química , Lignanos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos
4.
Clin Sci (Lond) ; 130(3): 151-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678171

RESUMEN

Since its discovery in 1999, a number of studies have evaluated the role of Nox1 NADPH oxidase in the cardiovascular system. Nox1 is activated in vascular cells in response to several different agonists, with its activity regulated at the transcriptional level as well as by NADPH oxidase complex formation, protein stabilization and post-translational modification. Nox1 has been shown to decrease the bioavailability of nitric oxide, transactivate the epidermal growth factor receptor, induce pro-inflammatory signalling, and promote cell migration and proliferation. Enhanced expression and activity of Nox1 under pathologic conditions results in excessive production of reactive oxygen species and dysregulated cellular function. Indeed, studies using genetic models of Nox1 deficiency or overexpression have revealed roles for Nox1 in the pathogenesis of cardiovascular diseases ranging from atherosclerosis to hypertension, restenosis and ischaemia/reperfusion injury. These data suggest that Nox1 is a potential therapeutic target for vascular disease, and drug development efforts are ongoing to identify a specific bioavailable inhibitor of Nox1.


Asunto(s)
Enfermedades Cardiovasculares/etiología , NADPH Oxidasas/metabolismo , Animales , Enfermedades Cardiovasculares/enzimología , Humanos , Isoenzimas/metabolismo , Estructura Molecular , Terapia Molecular Dirigida , NADPH Oxidasa 1 , NADPH Oxidasas/química
5.
J Neuroinflammation ; 11: 36, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24571599

RESUMEN

BACKGROUND: Sepsis- associated encephalopathy (SAE) is an early and common feature of severe infections. Oxidative stress is one of the mechanisms associated with the pathophysiology of SAE. The goal of this study was to investigate the involvement of NADPH oxidase in neuroinflammation and in the long-term cognitive impairment of sepsis survivors. METHODS: Sepsis was induced in WT and gp91(phox) knockout mice (gp91(phox-/-)) by cecal ligation and puncture (CLP) to induce fecal peritonitis. We measured oxidative stress, Nox2 and Nox4 gene expression and neuroinflammation in the hippocampus at six hours, twenty-four hours and five days post-sepsis. Mice were also treated with apocynin, a NADPH oxidase inhibitor. Behavioral outcomes were evaluated 15 days after sepsis with the inhibitory avoidance test and the Morris water maze in control and apocynin-treated WT mice. RESULTS: Acute oxidative damage to the hippocampus was identified by increased 4-HNE expression in parallel with an increase in Nox2 gene expression after sepsis. Pharmacological inhibition of Nox2 with apocynin completely inhibited hippocampal oxidative stress in septic animals. Pharmacologic inhibition or the absence of Nox2 in gp91(phox-/-) mice prevented glial cell activation, one of the central mechanisms associated with SAE. Finally, treatment with apocynin and inhibition of hippocampal oxidative stress in the acute phase of sepsis prevented the development of long-term cognitive impairment. CONCLUSIONS: Our results demonstrate that Nox2 is the main source of reactive oxygen species (ROS) involved in the oxidative damage to the hippocampus in SAE and that Nox2-derived ROS are determining factors for cognitive impairments after sepsis. These findings highlight the importance of Nox2-derived ROS as a central mechanism in the development of neuroinflammation associated with SAE.


Asunto(s)
Proteínas Bacterianas/metabolismo , Trastornos del Conocimiento/etiología , NADH NADPH Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sepsis/complicaciones , Acetofenonas/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Reacción de Prevención/efectos de los fármacos , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NADPH Oxidasas/metabolismo , Receptores Inmunológicos/deficiencia , Sepsis/tratamiento farmacológico , Sepsis/patología , Tiflitis/complicaciones , Tiflitis/etiología
6.
Fish Physiol Biochem ; 40(2): 445-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24068363

RESUMEN

Prochilodus lineatus (curimbatá), from the Procholodontidae family, is a Brazilian freshwater fish, which is important commercially, nutritionally and ecologically. It is encountered in the Rio da Prata Bay in Southern South America. Studies on the immune system of this fish are scarce, but the physiological mechanisms of the species are analogous to those of other vertebrates. Thus, this work discusses the present study, which correlates P. lineatus leukocytes and the generation of reactive oxygen species after modulatory stimuli. Leukocytes were characterized by light and electron transmission microscopy and investigated by the generation of H2O2 and O2 (-), using phenol red, flow-cytometry and electron transmission histochemistry. The study determined that monocytes and neutrophils are the main cells responsible for generating O2 after stimulation with phorbol myristate acetate. Superoxide dismutase successfully inhibited the generation of reactive oxygen species in neutrophils and monocytes, but stimulated generation when in association with phorbol myristate acetate. Fish leukocyte samples from P. lineatus showed cross-reactivity with antibodies directed against human NADPH-oxidase antibody subunits (p47(phox) and p67(phox)). Thus, catalase enhanced the presence of p47(phox). Neutrophil mitochondria were shown to be generators of H2O2 (charged by cerium precipitate), being enlarged and changing their format. The present study contributes to a better understanding of the respiratory burst pathways in this species and suggests mitochondria as the organelle responsible for generation of reactive oxygen species.


Asunto(s)
Characiformes/metabolismo , Animales , Brasil , Characiformes/sangre , Characiformes/inmunología , Femenino , Proteínas de Peces/metabolismo , Humanos , Inmunidad Innata , Riñón/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Leucocitos/ultraestructura , Masculino , Mitocondrias/metabolismo , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estallido Respiratorio
7.
Antioxid Redox Signal ; 40(4-6): 250-271, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37597204

RESUMEN

Significance: Cancer is a complex and heterotypic structure with a spatial organization that contributes to challenges in therapeutics. Enzymes associated with producing the gasotransmitter hydrogen sulfide (H2S) are differentially expressed in tumors. Indeed, critical and paradoxical roles have been attributed to H2S in cancer-promoting characteristics by targeting both cancer cells and their milieu. This review focuses on the evidence and knowledge gaps of H2S on the tumor redox microenvironment and the pharmacological effects of H2S donors on cancer biology. Recent Advances: Endogenous and pharmacological concentrations of H2S evoke different effects on the same cell type: physiological H2S concentrations have been associated with tumor development and progression. In contrast, pharmacological concentrations have been associated with anticancer effects. Critical Issues: The exact threshold between the promotion and inhibition of tumorigenesis by H2S is largely unknown. The main issues covered in this review include H2S-modulated signaling pathways that are critical for cancer cells, the potential effects of H2S on cellular components of the tumor microenvironment, temporal modulation of H2S in promoting or inhibiting tumor progression (similar to observed for inflammation), and pharmacological agents that modulate H2S and which could play a role in antineoplastic therapy. Future Directions: Given the complexity and heterogeneity of tumor composition, mechanistic studies on context-dependent pharmacological effects of H2S donors for cancer therapy are necessary. These studies must determine the critical signaling pathways and the cellular components involved to allow advances in the rational use of H2S donors as antineoplastic agents. Antioxid. Redox Signal. 40, 250-271.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Neoplasias , Humanos , Sulfuro de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Gasotransmisores/metabolismo , Transducción de Señal , Carcinogénesis , Microambiente Tumoral
8.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690903

RESUMEN

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Asunto(s)
Hipertensión , Músculo Liso Vascular , NADPH Oxidasa 1 , Proteína Disulfuro Isomerasas , Ratas Endogámicas SHR , Regulación hacia Arriba , Animales , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/genética , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Ratas , Músculo Liso Vascular/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratas Wistar , Transcripción Genética
9.
Front Physiol ; 14: 1055706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441000

RESUMEN

Aedes aegypti (Ae. aegypti) saliva induces a variety of anti-inflammatory and immunomodulatory activities. Interestingly, although it is known that mosquito bites cause allergic reactions in sensitised hosts, the primary exposure of humans to Ae. aegypti does not evoke significant itching. Whether active components in the saliva of Ae. aegypti can counteract the normal itch reaction to injury produced by a histaminergic or non-histaminergic pathway in vertebrate hosts is unknown. This study investigated the effects of Ae. aegypti mosquito salivary gland extract (SGE) on sensitive reactions such as itching and associated skin inflammation. Acute pruritus and plasma extravasation were induced in mice by the intradermal injection of either compound 48/80 (C48/80), the Mas-related G protein-coupled receptor (Mrgpr) agonist chloroquine (CQ), or the transient receptor potential ankyrin 1 (TRPA1) agonist allyl isothiocyanate (AITC). The i.d. co-injection of Ae. aegypti SGE inhibited itching, plasma extravasation, and neutrophil influx evoked by C48/80, but it did not significantly affect mast cell degranulation in situ or in vitro. Additionally, SGE partially reduced CQ- and AITC-induced pruritus in vivo, suggesting that SGE affects pruriceptive nerve firing independently of the histaminergic pathway. Activation of TRPA1 significantly increased intracellular Ca2+ in TRPA-1-transfected HEK293t lineage, which was attenuated by SGE addition. We showed for the first time that Ae. aegypti SGE exerts anti-pruriceptive effects, which are partially regulated by the histamine-independent itch TRPA1 pathway. Thus, SGE may possess bioactive molecules with therapeutic potential for treating nonhistaminergic itch.

10.
Biol Reprod ; 86(2): 56, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075471

RESUMEN

Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.


Asunto(s)
Desarrollo Embrionario/fisiología , NADPH Oxidasas/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo , Animales , Secuencia de Bases , Células Cultivadas , Femenino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , NADPH Oxidasa 2 , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
11.
Molecules ; 17(12): 14046-57, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23187288

RESUMEN

Root extracts of Holostylis reniformis (Aristolochiaceae) yielded three new natural sesquiterpenes, a sesquiterpene with an unusual carbon skeleton, 4,5-seco-guaiane (7-epi-11-hydroxychabrolidione A, 1), a nine-membered lactone with new carbon skeleton (holostylactone, 2), and a new megastigmane [(6S,7E)-6,9-dihydroxy-10-(2'-hydroxy-ethoxy)-4,7-megastigmadien-3-one, 3], together with bulnesol and sitosterol-3-O-β-D-glucopyranoside. The structures of these compounds were determined by spectroscopic analyses and B3LYP/STO-3G** theoretical studies.


Asunto(s)
Aristolochiaceae/química , Lactonas , Sesquiterpenos de Guayano/química , Sesquiterpenos , Lactonas/química , Lactonas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos de Guayano/aislamiento & purificación
12.
Cureus ; 14(6): e26301, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35898358

RESUMEN

Postoperative pain is a major concern in surgical patients and is often challenging to treat. Studies have shown that carboxytherapy may be helpful in some cases of persistent pain, as it increases tissue oxygenation. This report describes the case of a patient who received carboxytherapy after three years of persistent postoperative neuropathic facial pain and successfully had her symptoms reduced.

13.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159195

RESUMEN

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Asunto(s)
Sirolimus , Proteína 1A de Unión a Tacrolimus , Animales , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Péptidos/farmacología , Sirolimus/farmacología , Tacrolimus , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
14.
ScientificWorldJournal ; 11: 1749-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22125433

RESUMEN

Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.


Asunto(s)
Interacciones Huésped-Patógeno , Proteína Disulfuro Isomerasas/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Transporte de Proteínas
15.
Hematol Transfus Cell Ther ; 43(4): 430-436, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32962959

RESUMEN

BACKGROUND: In Philadelphia chromosome-negative myeloproliferative neoplasm (MPN) models, reactive oxygen species (ROS) are elevated and have been implicated in genomic instability, JAK2/STAT signaling amplification, and disease progression. Although the potential effects of ROS on the MPN phenotype, the effects of ruxolitinib treatment on ROS regulation have been poorly explored. Herein, we have reported the impact of ruxolitinib on redox signaling transcriptional network, and the effects of diphenyleneiodonium (DPI), a pan NOX inhibitor, in JAK2V617F-driven cellular models. METHOD: Redox signaling-related genes were investigated in SET2 cells upon ruxolitinib treatment by RNA-seq (GEO accession GSE69827). SET2 and HEL cells, which represent JAK2V617F-positive MPN cellular models with distinct sensitivity to apoptosis induced by ruxolitinib, were used. Cell viability was evaluated by MTT, apoptosis by annexin V/PI and flow cytometry, and cell signaling by quantitative PCR and Western blot. MAIN RESULTS: Ruxolitinib impacted on a network composed of redox signaling-related genes, and DUOX1 and DUOX2 were identified as potential modulators of ruxolitinib response. In SET2 and HEL cells, DPI reduced cell viability and, at low doses, it significantly potentiated ruxolitinib-induced apoptosis. In the molecular scenario, DPI inhibited STAT3, STAT5 and S6 ribosomal protein phosphorylation and induced PARP1 cleavage in JAK2V617F-positive cells. DPI combined with ruxolitinib increased PARP1 cleavage in SET2 cells and potentiated ruxolitinib-reduced STAT3, STAT5 and S6 ribosomal protein in HEL cells. CONCLUSION: Our study reveals a potential adaptation mechanism for resistance against ruxolitinib by transcriptionally reprogramming redox signaling in JAK2V617F cells and exposes redox vulnerabilities with therapeutic value in MPN cellular models.

16.
Shock ; 56(2): 268-277, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34276040

RESUMEN

ABSTRACT: Leukocyte Nox2 is recognized to have a fundamental microbicidal function in sepsis but the specific role of Nox2 in endothelial cells (EC) remains poorly elucidated. Here, we tested the hypothesis that endothelial Nox2 participates in the pathogenesis of systemic inflammation and hypotension induced by LPS. LPS was injected intravenously in mice with Tie2-targeted deficiency or transgenic overexpression of Nox2. Mice with Tie2-targeted Nox2 deficiency had increased circulating levels of TNF-α, enhanced numbers of neutrophils trapped in lungs, and aggravated hypotension after LPS injection, as compared to control LPS-injected animals. In contrast, Tie2-driven Nox2 overexpression attenuated inflammation and prevented the hypotension induced by LPS. Because Tie2-Cre targets both EC and myeloid cells we generated bone marrow chimeric mice with Nox2 deletion restricted to leukocytes or ECs. Mice deficient in Nox2 either in leukocytes or ECs had reduced LPS-induced neutrophil trapping in the lungs and lower plasma TNF-α levels as compared to control LPS-injected mice. However, the pronounced hypotensive response to LPS was present only in mice with EC-specific Nox2 deletion. Experiments in vitro with human vein or aortic endothelial cells (HUVEC and HAEC, respectively) treated with LPS revealed that EC Nox2 controls NF-κB activation and the transcription of toll-like receptor 4 (TLR4), which is the recognition receptor for LPS. In conclusion, these results suggest that endothelial Nox2 limits NF-κB activation and TLR4 expression, which in turn attenuates the severity of hypotension and systemic inflammation induced by LPS.


Asunto(s)
Células Endoteliales/fisiología , Endotoxemia/etiología , Hipotensión/etiología , Inflamación/etiología , NADPH Oxidasa 2/fisiología , Receptor Toll-Like 4/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Nat Prod ; 73(11): 1933-7, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-20961092

RESUMEN

Microbiological transformation of the aryltetralone lignan (-)-8'-epi-aristoligone (1) with Cunninghamella echinulata ATCC 10028B afforded two known natural lignans, (-)-holostyligone (3) and (-)-arisantetralone (4). Incubation of the aryltetralin lignan (-)-isogalbulin (2), obtained by chemical transformation of 1, with C. echinulata ATCC 10028B afforded the known lignan aryltetralol (5) and seven new metabolites, (-)-8-hydroxyisogalbulin (6), (-)-7-methoxyisogalbulin (7), (-)-4'-O-demethyl-8-hydroxyisogalbulin (8), (-)-7-methoxy-8-hydroxyisogalbulin (9), (-)-4'-O-demethyl-7-methoxyisogalbulin (10), (-)-4',5-O-didemethylcyclogalgravin (11), and (-)-4'-O-demethylcyclogalgravin (12). When 2 was subjected to biotransformation with Beauveria bassiana ATCC 7159, (-)-8-hydroxyisogalbulin (6) was the only isolable product. The structures of all new compounds were established by detailed analysis of their spectroscopic data.


Asunto(s)
Beauveria/metabolismo , Cunninghamella/metabolismo , Lignanos/metabolismo , Biotransformación , Lignanos/química , Lignanos/aislamiento & purificación , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
18.
Molecules ; 15(12): 9462-72, 2010 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-21178901

RESUMEN

A new aristolactam, aristolactam 9-O-ß-D-glucopyranosyl-(1→2)-ß-D-glucoside, and two alkamides, N-cis- and N-trans-p-coumaroyl-3-O-methyldopamine, were isolated from stems of Aristolochia gigantea, together with the known compounds allantoin, E-nerolidol, ß-sitosterol, (+)-kobusin, (+)-eudesmin, trans-N-feruloyltyramine, trans-N-coumaroyltyramine, trans-N-feruloyl-3-O-methyldopamine, aristolactam Ia-N-ß-D-glucoside, aristolactam Ia 8-ß-D-glucoside, aristolactam IIIa, and magnoflorine. Their structures were determined by spectroscopic analyses.


Asunto(s)
Aristolochia/química , Lactamas/química , Alcamidas Poliinsaturadas/química , Lactamas/aislamiento & purificación , Estructura Molecular , Alcamidas Poliinsaturadas/aislamiento & purificación
19.
Microbiol Res ; 241: 126592, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33002720

RESUMEN

The APSES family, comprising of the transcriptional regulators Asm1p, Phd1p, Sok2p, Efg1p, and StuA, is found exclusively in fungi and has been reported to control several cellular processes in these organisms. However, its function in dermatophytes has not yet been completely understood. Here, we generated two null mutant strains by deleting the stuA gene in the dermatophyte Trichophyton rubrum, the most common clinical isolate obtained from human skin and nail mycoses. The functional characterization of the knocked-out strains revealed the involvement of stuA in germination, morphogenesis of conidia and hyphae, pigmentation, stress responses, and virulence. Although the mutant strains could grow under several nutritional conditions, growth on the keratin medium, human nails, and skin was impaired. The co-culture of stuA mutants with human keratinocytes revealed enhanced development. Moreover, a stuA mutant grown on the keratin substrate showed a marked decrease in the transcript numbers of the hydrophobin encoding gene (hypA), suggesting the involvement of stuA in the molecular mechanisms underlying mechanosensing during the fungi-host interaction. In addition, bioinformatics analyses revealed the potential involvement of StuA in different biological processes such as oxidation-reduction, phosphorylation, proteolysis, transcription/translation regulation, and carbohydrate metabolism. Cumulatively, the present study suggested that StuA is a crosstalk mediator of many pathways and is an integral component of the infection process, implying that it could be a potential target for antifungal therapy.


Asunto(s)
Arthrodermataceae/genética , Arthrodermataceae/patogenicidad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/genética , Arthrodermataceae/metabolismo , Línea Celular , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Humanos , Queratinocitos/microbiología , Queratinas/metabolismo , Micosis/microbiología , Uñas/microbiología , Piel/microbiología , Estrés Fisiológico/fisiología , Virulencia/genética
20.
Einstein (Sao Paulo) ; 17(3): eAO4412, 2019 May 16.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-31116228

RESUMEN

OBJECTIVE: To analyze frequency, age and time trend of complementary feeding introduction in infants. METHODS: Retrospective study of infants' data evaluated at nutrition sector of Programa de Atenção aos Bebês of Programa Einstein na Comunidade de Paraisópolis from 2012 to 2015. Survival analyzes were performed, and the outcome considered was the time until the introduction of each specific food. RESULTS: Participants were 700 infants, with 5.5 months of median age. Water was the most consumed supplement (80.0%), followed by infant formula (64.1%) and juice (51.1%). Regarding the beginning of complementary feeding, water, infant formula and tea were the first to be introduced, with a median age of 3 months. It is noteworthy that almost one-fifth of the infants had already received processed foods. Water introduction proportions showed a significant tendency to increase over the years, and among infants at 6 months of age, varied from 72.8%, in 2012, to 91.1%, in 2015. The introduction of processed food category items presented a significant trend of change, showing, however, a reduction from 30.8%, in 2012, to 15.6%, in 2015, in this same age group. Among the processed foods, flour based thickeners (36.3%) and biscuits (26.3%) presented the highest proportions of consume. CONCLUSION: Water and infant formula were the most widely consumed and early introduced foods. Among the studied years, water introduction presented a significant tendency to increase and processed foods category to reduce consumption.


Asunto(s)
Fenómenos Fisiológicos Nutricionales del Lactante , Servicios de Salud del Niño , Consejo , Humanos , Lactante , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA