Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neuroinflammation ; 12: 10, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25600429

RESUMEN

BACKGROUND: Motor cortex stimulation (MCS) is an effective treatment in neuropathic pain refractory to pharmacological management. However, analgesia is not satisfactorily obtained in one third of patients. Given the importance of understanding the mechanisms to overcome therapeutic limitations, we addressed the question: what mechanisms can explain both MCS effectiveness and refractoriness? Considering the crucial role of spinal neuroimmune activation in neuropathic pain pathophysiology, we hypothesized that modulation of spinal astrocyte and microglia activity is one of the mechanisms of action of MCS. METHODS: Rats with peripheral neuropathy (chronic nerve injury model) underwent MCS and were evaluated with a nociceptive test. Following the test, these animals were divided into two groups: MCS-responsive and MCS-refractory. We also evaluated a group of neuropathic rats not stimulated and a group of sham-operated rats. Some assays included rats with peripheral neuropathy that were treated with AM251 (a cannabinoid antagonist/inverse agonist) or saline before MCS. Finally, we performed immunohistochemical analyses of glial cells (microglia and astrocytes), cytokines (TNF-α and IL-1ß), cannabinoid type 2 (CB2), µ-opioid (MOR), and purinergic P2X4 receptors in the dorsal horn of the spinal cord (DHSC). FINDINGS: MCS reversed mechanical hyperalgesia, inhibited astrocyte and microglial activity, decreased proinflammatory cytokine staining, enhanced CB2 staining, and downregulated P2X4 receptors in the DHSC ipsilateral to sciatic injury. Spinal MOR staining was also inhibited upon MCS. Pre-treatment with AM251 blocked the effects of MCS, including the inhibitory mechanism on cells. Finally, MCS-refractory animals showed similar CB2, but higher P2X4 and MOR staining intensity in the DHSC in comparison to MCS-responsive rats. CONCLUSIONS: These results indicate that MCS induces analgesia through a spinal anti-neuroinflammatory effect and the activation of the cannabinoid and opioid systems via descending inhibitory pathways. As a possible explanation for MCS refractoriness, we propose that CB2 activation is compromised, leading to cannabinoid resistance and consequently to the perpetuation of neuroinflammation and opioid inefficacy.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Corteza Motora/fisiología , Mielitis/etiología , Mielitis/terapia , Neuralgia/complicaciones , Análisis de Varianza , Animales , Antiinflamatorios/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Hiperalgesia/etiología , Hiperalgesia/terapia , Masculino , Proteínas de Microfilamentos/metabolismo , Corteza Motora/efectos de los fármacos , Neuralgia/patología , Neuralgia/terapia , Neuroglía/metabolismo , Neuroglía/patología , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Piperidinas/efectos adversos , Pirazoles/efectos adversos , Ratas , Receptor Cannabinoide CB2/metabolismo , Receptores Opioides mu/metabolismo , Receptores Purinérgicos P2X4/metabolismo
2.
J Neurosurg ; 132(1): 239-251, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30611141

RESUMEN

OBJECTIVE: Motor cortex stimulation (MCS) is a neurosurgical technique used to treat patients with refractory neuropathic pain syndromes. MCS activates the periaqueductal gray (PAG) matter, which is one of the major centers of the descending pain inhibitory system. However, the neurochemical mechanisms in the PAG that underlie the analgesic effect of MCS have not yet been described. The main goal of this study was to investigate the neurochemical mechanisms involved in the analgesic effect induced by MCS in neuropathic pain. Specifically, we investigated the release of γ-aminobutyric acid (GABA), glycine, and glutamate in the PAG and performed pharmacological antagonism experiments to validate of our findings. METHODS: Male Wistar rats with surgically induced chronic constriction of the sciatic nerve, along with sham-operated rats and naive rats, were implanted with both unilateral transdural electrodes in the motor cortex and a microdialysis guide cannula in the PAG and subjected to MCS. The MCS was delivered in single 15-minute sessions. Neurotransmitter release was evaluated in the PAG before, during, and after MCS. Quantification of the neurotransmitters GABA, glycine, and glutamate was performed using a high-performance liquid chromatography system. The mechanical nociceptive threshold was evaluated initially, on the 14th day following the surgery, and during the MCS. In another group of neuropathic rats, once the analgesic effect after MCS was confirmed by the mechanical nociceptive test, rats were microinjected with saline or a glycine antagonist (strychnine), a GABA antagonist (bicuculline), or a combination of glycine and GABA antagonists (strychnine+bicuculline) and reevaluated for the mechanical nociceptive threshold during MCS. RESULTS: MCS reversed the hyperalgesia induced by peripheral neuropathy in the rats with chronic sciatic nerve constriction and induced a significant increase in the glycine and GABA levels in the PAG in comparison with the naive and sham-treated rats. The glutamate levels remained stable under all conditions. The antagonism of glycine, GABA, and the combination of glycine and GABA reversed the MCS-induced analgesia. CONCLUSIONS: These results suggest that the neurotransmitters glycine and GABA released in the PAG may be involved in the analgesia induced by cortical stimulation in animals with neuropathic pain. Further investigation of the mechanisms involved in MCS-induced analgesia may contribute to clinical improvements for the treatment of persistent neuropathic pain syndromes.


Asunto(s)
Analgesia/métodos , Estimulación Encefálica Profunda , Glicina/fisiología , Corteza Motora/fisiopatología , Neuralgia/terapia , Sustancia Gris Periacueductal/fisiopatología , Ciática/terapia , Ácido gamma-Aminobutírico/fisiología , Animales , Bicuculina/administración & dosificación , Bicuculina/toxicidad , Vías Eferentes/efectos de los fármacos , Vías Eferentes/fisiología , Antagonistas del GABA/administración & dosificación , Antagonistas del GABA/toxicidad , Ácido Glutámico/análisis , Glicina/análisis , Glicina/antagonistas & inhibidores , Glicina/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Hiperalgesia/terapia , Masculino , Microdiálisis , Microinyecciones , Neuralgia/tratamiento farmacológico , Neuralgia/fisiopatología , Umbral del Dolor , Sustancia Gris Periacueductal/efectos de los fármacos , Ratas , Ratas Wistar , Nervio Ciático/lesiones , Ciática/tratamiento farmacológico , Ciática/fisiopatología , Estricnina/administración & dosificación , Estricnina/toxicidad , Ácido gamma-Aminobutírico/análisis , Ácido gamma-Aminobutírico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA