Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836439

RESUMEN

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require ATP. We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine (PCr) for ATP regeneration through the creatine (Cr)-creatine kinase (CK)-PCr pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses and immunofluorescence microscopy localized GAMT, CKM, and CKB proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium (LE) at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. GAMT protein is expressed in endometrial LE at the uterine-placental interface, but immunostaining is more intense in LE at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.

2.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625528

RESUMEN

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Asunto(s)
Aminoácidos , Calidad de Vida , Gatos , Perros , Animales , Articulaciones , Matriz Ósea , Prolina , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA