Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 24(1): 30, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707753

RESUMEN

BACKGROUND: The development of single-cell technologies yields large datasets of information as diverse and multimodal as transcriptomes, immunophenotypes, and spatial position from tissue sections in the so-called 'spatial transcriptomics'. Currently however, user-friendly, powerful, and free algorithmic tools for straightforward analysis of spatial transcriptomic datasets are scarce. RESULTS: Here, we introduce Single-Cell Spatial Explorer, an open-source software for multimodal exploration of spatial transcriptomics, examplified with 9 human and murine tissues datasets from 4 different technologies. CONCLUSIONS: Single-Cell Spatial Explorer is a very powerful, versatile, and interoperable tool for spatial transcriptomics analysis.


Asunto(s)
Programas Informáticos , Transcriptoma , Humanos , Animales , Ratones , Perfilación de la Expresión Génica , Análisis Espacial , Análisis de la Célula Individual
2.
Mol Ther ; 30(4): 1553-1563, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35038581

RESUMEN

Toll-like receptors (TLRs) are key players in the innate immune system. Recent studies have suggested that they may affect the growth of pancreatic cancer, a disease with no cure. Among them, TLR7 shows promise for therapy but may also promotes tumor growth. Thus, we aimed to clarify the therapeutic potential of TLR7 ligands in experimental pancreatic cancer models, to open the door for clinical applications. In vitro, we found that TLR7 ligands strongly inhibit the proliferation of both human and murine pancreatic cancer cells, compared with TLR2 agonists. Hence, TLR7 treatment alters cancer cells' cell cycle and induces cell death by apoptosis. In vivo, TLR7 agonist therapy significantly delays the growth of murine pancreatic tumors engrafted in immunodeficient mice. Remarkably, TLR7 ligands administration instead increases tumor growth and accelerates animal death when tumors are engrafted in immunocompetent models. Further investigations revealed that TLR7 agonists modulate the intratumoral content and phenotype of macrophages and that depleting such tumor-associated macrophages strongly hampers TLR7 agonist-induced tumor growth. Collectively, our findings shine a light on the duality of action of TLR7 agonists in experimental cancer models and call into question their use for pancreatic cancer therapy.


Asunto(s)
Neoplasias Pancreáticas , Receptor Toll-Like 7 , Animales , Humanos , Ligandos , Macrófagos/metabolismo , Glicoproteínas de Membrana , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Proc Natl Acad Sci U S A ; 114(44): E9346-E9355, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078321

RESUMEN

Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3ß,5α,6ß-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3ß,5α-diol (OCDO) by 11ß-hydroxysteroid-dehydrogenase-type-2 (11ßHSD2). 11ßHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11ßHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11ßHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11ßHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinógenos/metabolismo , Colesterol/metabolismo , Receptores de Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Colesterol/análogos & derivados , Epóxido Hidrolasas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , ARN Mensajero/metabolismo
4.
Mol Ther ; 23(4): 779-89, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25586689

RESUMEN

This phase 1 trial was aimed to determine the safety, pharmacokinetics, and preliminary clinical activity of CYL-02, a nonviral gene therapy product that sensitizes pancreatic cancer cells to chemotherapy. CYL-02 was administrated using endoscopic ultrasound in 22 patients with pancreatic cancer that concomitantly received chemotherapy (gemcitabine). The maximum-tolerated dose (MTD) exceeded the maximal feasible dose of CYL-02 and was not identified. Treatment-related toxicities were mild, without serious adverse events. Pharmacokinetic analysis revealed a dose-dependent increase in CYL-02 DNA exposure in blood and tumors, while therapeutic RNAs were detected in tumors. No objective response was observed, but nine patients showed stable disease up to 6 months following treatment and two of these patients experienced long-term survival. Panels of plasmatic microRNAs and proteins were identified as predictive of gene therapy efficacy. We demonstrate that CYL-02 nonviral gene therapy has a favorable safety profile and is well tolerated in patients. We characterize CYL-02 biodistribution and demonstrate therapeutic gene expression in tumors. Treated patients experienced stability of disease and predictive biomarkers of response to treatment were identified. These promising results warrant further evaluation in phase 2 clinical trial.


Asunto(s)
Terapia Genética , Neoplasias Pancreáticas/terapia , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Distribución Tisular
5.
Br J Cancer ; 113(11): 1590-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26512875

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia (PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic signatures from each precancerous stage exist and are detectable in plasma. METHODS: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry (CE-MS) and Chip-MS/MS. RESULTS: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3. CONCLUSIONS: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma in Situ/sangre , Carcinoma Ductal Pancreático/sangre , Proteínas de Neoplasias/sangre , Neoplasias Pancreáticas/sangre , Péptidos/sangre , Lesiones Precancerosas/sangre , Animales , Biomarcadores de Tumor/análisis , Carcinoma in Situ/química , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/química , Modelos Animales de Enfermedad , Ratones , Proteínas de Neoplasias/análisis , Neoplasias Pancreáticas/química , Péptidos/análisis , Lesiones Precancerosas/química , Lesiones Precancerosas/patología , Análisis por Matrices de Proteínas , Proteoma/análisis
6.
Hepatology ; 59(2): 622-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24620380

RESUMEN

UNLABELLED: Transjugular intrahepatic portosystemic shunts (TIPS) is a second-line treatment because of an increased incidence of overt hepatic encephalopathy (OHE). A better selection of patients to decrease this risk is needed and one promising approach could be the detection of minimal hepatic encephalopathy (MHE). The aim of the present prospective study was to determine whether pre-TIPS minimal hepatic encephalopathy was predictive of post-TIPS OHE and to compare Psychometric Hepatic Encephalopathy Sum Score(PHES) and the Critical Flicker Frequency (CFF) in this setting. From May 2008 to January 2011, 54 consecutive patients treated with TIPS were included. PHES and CFF were performed 1 to 7 days before and after TIPS at months 1, 3, 6, 9, and 12 or until liver transplantation or death. Before TIPS, MHE was detected by PHES and CFF in 33% and 39% of patients, respectively. After the TIPS procedure, 19 patients (35%) experienced a total of 64 episodes of OHE. OHE developed significantly more often inpatients for whom an indication for TIPS had been refractory ascites, with a history of OHE or of renal failure, lower hemoglobin level, or MHE as diagnosed by CFF. Post-TIPS OHE was more accurately predicted by CFF than by PHES. Absence of MHE at CFF had a good negative predictive value (91%) for the risk of post-TIPS recurrent OHE, defined as the occurrence of three or more episodes of OHE or of one episode which lasted more than 15 days. The absence of pre-TIPS history of OHE and a CFF value equal to or greater than 39 Hz had a 100% negative predictive value for post-TIPS recurrent OHE. CONCLUSION: Aiming to decrease the rate of post-TIPS HE, the use of CFF could help selecting patients for TIPS.


Asunto(s)
Encefalopatía Hepática/diagnóstico , Encefalopatía Hepática/epidemiología , Hipertensión Portal/cirugía , Cirrosis Hepática/cirugía , Derivación Portosistémica Intrahepática Transyugular , Cuidados Preoperatorios , Psicometría/métodos , Anciano , Interpretación Estadística de Datos , Femenino , Encefalopatía Hepática/etiología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Selección de Paciente , Derivación Portosistémica Intrahepática Transyugular/efectos adversos , Periodo Posoperatorio , Valor Predictivo de las Pruebas , Estudios Prospectivos , Factores de Riesgo
7.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38294491

RESUMEN

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Asunto(s)
Adenocarcinoma , Citidina Desaminasa , Inhibidores de la Síntesis del Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Citidina Desaminasa/metabolismo , ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Replicación del ADN , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico
8.
J Biol Chem ; 287(49): 41458-68, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23055519

RESUMEN

F1 domain of F(1)F(o)-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here we show for the first time the presence of the F(1)-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using surface plasmon resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin (G-gly)) as a new ligand for the F(1)-ATPase. By molecular modeling, we identified the motif in the peptide sequence (E(E/D)XY), that directly interacts with the F(1)-ATPase and the amino acids in the F(1)-ATPase that bind this motif. Replacement of the Glu-9 residue by an alanine in the E(E/D)XY motif resulted in a strong decrease of G-gly binding to the F(1)-ATPase and the loss of its biological activity. In addition we demonstrated that F(1)-ATPase mediates the growth effects of the peptide. Indeed, blocking F(1)-ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F(1)-ATPase, which is induced by G-gly. These results suggest an important contribution of cell surface F(1)-ATPase in the pro-proliferative action of this gastrointestinal peptide.


Asunto(s)
Membrana Celular/enzimología , Colon/enzimología , Células Epiteliales/metabolismo , ATPasas de Translocación de Protón/química , Adenosina Difosfato/química , Secuencia de Aminoácidos , Animales , Células CACO-2 , Dominio Catalítico , Bovinos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Células Endoteliales/citología , Humanos , Mitocondrias/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie
9.
Blood ; 116(22): 4703-11, 2010 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-20688960

RESUMEN

CXCL4 and CXCL4L1 are 2 closely related CXC chemokines that exhibit potent antiangiogenic activity. Because interactions with glycosaminoglycans play a crucial role in chemokines activity, we determined the binding parameters of CXCL4 and CXCL4L1 for heparin, heparan sulfate, and chondroitin sulfate B. We further demonstrated that the Leu67/His67 substitution is critical for the decrease in glycan binding of CXCL4L1 but also for the increase of its angiostatic activities. Using a set of mutants, we show that glycan affinity and angiostatic properties are not completely related. These data are reinforced using a monoclonal antibody that specifically recognizes structural modifications in CXCL4L1 due to the presence of His67 and that blocks its biologic activity. In vivo, half-life and diffusibility of CXCL4L1 compared with CXCL4 is strongly increased. As opposed to CXCL4L1, CXCL4 is preferentially retained at its site of expression. These findings establish that, despite small differences in the primary structure, CXCL4L1 is highly distinct from CXCL4. These observations are not only of great significance for the antiangiogenic activity of CXCL4L1 and for its potential use in clinical development but also for other biologic processes such as inflammation, thrombosis or tissue repair.


Asunto(s)
Aminoácidos/metabolismo , Dermatán Sulfato/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Factor Plaquetario 4/metabolismo , Secuencia de Aminoácidos , Aminoácidos/análisis , Aminoácidos/genética , Animales , Bovinos , Línea Celular , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutación , Neovascularización Fisiológica , Factor Plaquetario 4/análisis , Factor Plaquetario 4/genética , Unión Proteica , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008174

RESUMEN

Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages are characterized by an "M1-like phenotype". We show here that their reprogramming towards an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival. Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the survival of CLL cells.

11.
Cell Mol Immunol ; 18(8): 1861-1870, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34183807

RESUMEN

The high cytotoxic activity of Vγ9Vδ2 T lymphocytes against tumor cells makes them useful candidates in anticancer therapies. However, the molecular mechanism of their activation by phosphoantigens (PAgs) is not completely known. Many studies have depicted the mechanism of Vγ9Vδ2 T-cell activation by PAg-sensed accessory cells, such as immune presenting cells or tumor cells. In this study, we demonstrated that pure resting Vγ9Vδ2 T lymphocytes can self-activate through exogenous PAgs, involving their TCR and the butyrophilins BTN3A1 and BTN2A1. This is the first time that these three molecules, concurrently expressed at the plasma membrane of Vγ9Vδ2 T cells, have been shown to be involved together on the same and unique T cell during PAg activation. Moreover, the use of probucol to stimulate the inhibition of this self-activation prompted us to propose that ABCA-1 could be implicated in the transfer of exogenous PAgs inside Vγ9Vδ2 T cells before activating them through membrane clusters formed by γ9TCR, BTN3A1 and BTN2A1. The self-activation of Vγ9Vδ2 T cells, which leads to self-killing, can therefore participate in the failure of γδ T cell-based therapies with exogenous PAgs and should be taken into account.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T , Antígenos CD/metabolismo , Butirofilinas/metabolismo , Activación de Linfocitos , Subgrupos de Linfocitos T
12.
Oncoimmunology ; 10(1): 1939518, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721945

RESUMEN

γδ T lymphocytes diverge from conventional T CD8 lymphocytes for ontogeny, homing, and antigen specificity, but whether their differentiation in tumors also deviates was unknown. Using innovative analyses of our original and ~150 published single-cell RNA sequencing datasets validated by phenotyping of human tumors and murine models, here we present the first high-resolution view of human γδ T cell differentiation in cancer. While γδ T lymphocytes prominently encompass TCRVγ9 cells more differentiated than T CD8 in healthy donor's blood, a different scenario is unveiled in tumors. Solid tumors and lymphomas are infiltrated by a majority of TCRVγnon9 γδ T cells which are quantitatively correlated and remarkably aligned with T CD8 for differentiation, exhaustion, gene expression profile, and response to immune checkpoint therapy. This cancer-wide association is critical for developing cancer immunotherapies.


Asunto(s)
Neoplasias , Transcriptoma , Animales , Linfocitos T CD8-positivos , Diferenciación Celular , Humanos , Linfocitos Infiltrantes de Tumor , Ratones , Neoplasias/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Subgrupos de Linfocitos T
13.
J Biol Chem ; 284(44): 30067-75, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19740757

RESUMEN

In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems, which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for Walker-box partition ATPases the molecular mechanism is unknown. ATPase activity appears to be essential for this process. DNA and centromere-binding proteins are known to stimulate the ATPase activity but molecular details of the stimulation mechanism have not been reported. We have investigated the interactions which stimulate ATP hydrolysis by the SopA partition ATPase of plasmid F. By using SopA and SopB proteins deficient in DNA binding, we have found that the intrinsic ability of SopA to hydrolyze ATP requires direct DNA binding by SopA but not by SopB. Our results show that two independent interactions of SopA act in synergy to stimulate its ATPase. SopA must interact with (i) DNA, through its ATP-dependent nonspecific DNA binding domain and (ii) SopB, which we show here to provide an arginine-finger motif. In addition, the latter interaction stimulates ATPase maximally when SopB is part of the partition complex. Hence, our data demonstrate that DNA acts on SopA in two ways, directly as nonspecific DNA and through SopB as centromeric DNA, to fully activate SopA ATP hydrolysis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , ADN/fisiología , Adenosina Trifosfatasas , Sitios de Unión , ADN Bacteriano , Hidrólisis
14.
Biochim Biophys Acta ; 1788(9): 1695-705, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19426705

RESUMEN

Juvenile hormone (JH) controls insect development, metamorphosis and reproduction. In insect hemolymph a significant proportion of JH is bound to juvenile hormone binding protein (JHBP), which serves as a carrier supplying the hormone to the target tissues. To shed some light on JHBP passage within insect tissues, the interaction of this carrier with other proteins from Galleria mellonella (Lepidoptera) was investigated. Our studies revealed the presence of JHBP within the tracheal epithelium and fat body cells in both the membrane and cytoplasmic sections. We found that the interaction between JHBP and membrane proteins occurs with saturation kinetics and is specific and reversible. ATP synthase was indicated as a JHBP membrane binding protein based upon SPR-BIA and MS analysis. It was found that in G. mellonella fat body, this enzyme is present in mitochondrial fraction, plasma membranes and cytosol as well. In the model system containing bovine F(1) ATP synthase and JHBP, the interaction between these two components occurs with K(d)=0.86 nM. In hemolymph we detected JHBP binding to apolipophorin, arylphorin and hexamerin. These results provide the first demonstration of the physical interaction of JHBP with membrane and hemolymph proteins which can be involved in JHBP molecule traffic.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Insectos/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Transporte de Proteínas/fisiología , Animales , Apolipoproteínas/metabolismo , Cuerpo Adiposo/química , Cuerpo Adiposo/ultraestructura , Hemolinfa/metabolismo , Hormonas Juveniles/metabolismo , Proteínas de la Membrana/metabolismo , Mariposas Nocturnas , Resonancia por Plasmón de Superficie
15.
Mol Biol Cell ; 18(9): 3607-19, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17596512

RESUMEN

LEKTI is a 15-domain serine proteinase inhibitor whose defective expression underlies the severe autosomal recessive ichthyosiform skin disease, Netherton syndrome. Here, we show that LEKTI is produced as a precursor rapidly cleaved by furin, generating a variety of single or multidomain LEKTI fragments secreted in cultured keratinocytes and in the epidermis. The identity of these biological fragments (D1, D5, D6, D8-D11, and D9-D15) was inferred from biochemical analysis, using a panel of LEKTI antibodies. The functional inhibitory capacity of each fragment was tested on a panel of serine proteases. All LEKTI fragments, except D1, showed specific and differential inhibition of human kallikreins 5, 7, and 14. The strongest inhibition was observed with D8-D11, toward KLK5. Kinetics analysis revealed that this interaction is rapid and irreversible, reflecting an extremely tight binding complex. We demonstrated that pH variations govern this interaction, leading to the release of active KLK5 from the complex at acidic pH. These results identify KLK5, a key actor of the desquamation process, as the major target of LEKTI. They disclose a new mechanism of skin homeostasis by which the epidermal pH gradient allows precisely regulated KLK5 activity and corneodesmosomal cleavage in the most superficial layers of the stratum corneum.


Asunto(s)
Calicreínas/antagonistas & inhibidores , Queratolíticos/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Serpinas/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células Epidérmicas , Epidermis/enzimología , Furina/metabolismo , Glicosilación , Humanos , Concentración de Iones de Hidrógeno , Queratinocitos/metabolismo , Cinética , Modelos Biológicos , Unión Proteica , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Inhibidoras de Proteinasas Secretoras/química , Inhibidor de Serinpeptidasas Tipo Kazal-5 , Serpinas/química , Especificidad por Sustrato , Resonancia por Plasmón de Superficie
16.
J Cell Physiol ; 221(3): 594-602, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19650074

RESUMEN

The stress protein p8 is a small, highly basic, unfolded, and multifunctional protein. We have previously shown that most of its functions are exerted through interactions with other proteins, whose activities are thereby enhanced or repressed. In this work we describe another example of such mechanism, by which p8 binds and negatively regulates MSL1, a histone acetyl transferase (HAT)-associated protein, which in turn binds the DNA-damage-associated 53BP1 protein to facilitate DNA repair following DNA gamma-irradiation. Contrary to the HAT-associated activity, MSL1-dependent DNA-repair activity is almost completely dependent on 53BP1 expression. The picture that has emerged from our findings is that 53BP1 could be a scaffold that gets the HAT MSL1-dependent DNA-repair activity to the sites of DNA damage. Finally, we also found that, although p8 expression is transiently activated after gamma-irradiation, it is eventually submitted to sustained down-regulation, presumably to allow development of MSL1-associated DNA-repair activity. We conclude that interaction of MSL1 with 53BP1 brings MSL1-dependent HAT activity to the vicinity of damaged DNA. MSL1-dependent HAT activity, which is negatively regulated by the stress protein p8, induces chromatin remodeling and relaxation allowing access to DNA of the repair machinery.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/fisiología , Rayos gamma , Proteínas de Neoplasias/fisiología , Línea Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Expresión Génica/genética , Expresión Génica/efectos de la radiación , Células HeLa , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/fisiología , ARN Interferente Pequeño/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Transfección , Proteína 1 de Unión al Supresor Tumoral P53 , Técnicas del Sistema de Dos Híbridos
17.
Sci Rep ; 9(1): 4181, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862887

RESUMEN

Discovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.


Asunto(s)
Procesamiento Proteico-Postraduccional , Programas Informáticos , Espectrometría de Masas en Tándem , Algoritmos , Animales , Cromatografía Liquida , Ratones , Péptidos/metabolismo
18.
Front Genet ; 10: 254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984242

RESUMEN

The 4G family of eukaryotic mRNA translation initiation factors is composed of three members (eIF4GI, eIF4GII, and DAP5). Their specific roles in translation initiation are under intense investigations, but how their respective intracellular amounts are controlled remains poorly understood. Here we show that eIF4GI and eIF4GII exhibit much shorter half-lives than that of DAP5. Both eIF4GI and eIF4GII proteins, but not DAP5, contain computer-predicted PEST motifs in their N-termini conserved across the animal kingdom. They are both sensitive to degradation by the proteasome. Under normal conditions, eIF4GI and eIF4GII are protected from proteasomal destruction through binding to the detoxifying enzyme NQO1 [NAD(P)H:quinone oxidoreductase]. However, when cells are exposed to oxidative stress both eIF4GI and eIF4GII, but not DAP5, are degraded by the proteasome in an N-terminal-dependent manner, and cell viability is more compromised upon silencing of DAP5. These findings indicate that the three eIF4G proteins are differentially regulated by the proteasome and that persistent DAP5 plays a role in cell survival upon oxidative stress.

19.
Nat Metab ; 1(1): 133-146, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-32694809

RESUMEN

Impaired adipose tissue insulin signalling is a critical feature of insulin resistance. Here we identify a pathway linking the lipolytic enzyme hormone-sensitive lipase (HSL) to insulin action via the glucose-responsive transcription factor ChREBP and its target, the fatty acid elongase ELOVL6. Genetic inhibition of HSL in human adipocytes and mouse adipose tissue results in enhanced insulin sensitivity and induction of ELOVL6. ELOVL6 promotes an increase in phospholipid oleic acid, which modifies plasma membrane fluidity and enhances insulin signalling. HSL deficiency-mediated effects are suppressed by gene silencing of ChREBP and ELOVL6. Mechanistically, physical interaction between HSL, independent of lipase activity, and the isoform activated by glucose metabolism ChREBPα impairs ChREBPα translocation into the nucleus and induction of ChREBPß, the isoform with high transcriptional activity that is strongly associated with whole-body insulin sensitivity. Targeting the HSL-ChREBP interaction may allow therapeutic strategies for the restoration of insulin sensitivity.


Asunto(s)
Adipocitos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Resistencia a la Insulina , Insulina/metabolismo , Esterol Esterasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Expresión Génica , Glucosa/metabolismo , Resistencia a la Insulina/genética , Fluidez de la Membrana/genética , Ratones , Ratones Transgénicos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transducción de Señal
20.
Endocrinology ; 149(6): 3137-47, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18325993

RESUMEN

Somatostatin is a neuropeptide that inhibits exocrine and endocrine secretions of several hormones and negatively regulates cell proliferation. These events are mediated through somatostatin engagement on one of five G protein-coupled receptors named SSTR1 to STTR5. Somatostatin binding to SSTR2 mediates predominantly antisecretory and antiproliferative effects; two important biological activities in the gastroenteropancreatic endocrine and exocrine system. Herein we demonstrate novel regulatory sequences for human (h) SSTR2 transcription. By genomic DNA sequence analysis, we reveal two CpG islands located 3.8 kb upstream from the transcription start site. We identify a novel transcription start site and a promoter region within one of these CpG islands. We demonstrate that two epigenetic modifications, DNA methylation and histone acetylation, regulate the activation of hSSTR2 upstream promoter. Furthermore, we show that the transcription from this upstream promoter region directly correlates to hSSTR2 mRNA expression in various human cell lines. A combined treatment of a demethylating agent, 5-aza-2-deoxycytidine and a histone deacetylase inhibitor, trichostatin A, leads to increased expression of hSSTR2 mRNA in cell lines in which the CpG island is methylated. The epigenetic regulation of this promoter region results in differential expression of hSSTR2 mRNA in human cell lines. This study reveals the existence of a novel upstream promoter for the hSSTR2 gene that is regulated by epigenetic modifications, suggesting for complex control of the hSSTR2 transcription.


Asunto(s)
Cromosomas Humanos Par 17 , Regiones Promotoras Genéticas , ARN Mensajero/genética , Receptores de Somatostatina/genética , Secuencia de Bases , Cromatina/genética , Cromatina/ultraestructura , Metilación de ADN , Fosfatos de Dinucleósidos , Exones , Genes Reporteros , Humanos , Luciferasas/genética , Datos de Secuencia Molecular , Plásmidos , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA