Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(21): 9418-9426, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38097382

RESUMEN

The synthesis and characterization of two cerium complexes of redox-active amine/amido-phenolate-type ligands are reported. A tripodal framework comprising the tris(2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)amino-phenyl) amine (H6Clamp) proligand was synthesized for comparison of its cerium complex with a potassium-cerium heterobimetallic complex of the 4,6-di-tert-butyl-2-[(2,6-diisopropylphenyl)imino]quinone (dippap) proligand. Structural studies indicate differences in the cerium(III) cation coordination spheres, where CeIII(CH3CN)1.5(H3Clamp) (1-Ce(H3Clamp)) exhibits shorter Ce-O distances and longer Ce-N bond distances compared to the analogous distances in K3(THF)3CeIII(dippap)3 (2-Ce(ap)), due to the gross structural differences between the systems. Differences are also evident in the temperature-dependent magnetic properties, where smaller χT products were observed for 2-Ce(ap) compared to 1-Ce(H3Clamp). Solution electrochemical studies for the complexes were interpreted based on ligand- and metal-based oxidation events, and the cerium(III) oxidation of 2-Ce(ap) was observed to be more facile than that of 1-Ce(H3Clamp), behavior that was cautiously attributed to the rigidity of the encrypted 1-Ce(H3Clamp) complex compared to the heterobimetallic framework of 2-Ce(ap). These results contribute to the understanding of how ligand designs can promote facile redox cycling for cerium complexes of redox-active ligands, given the large contraction of cerium-ligand bonds upon oxidation.

2.
Inorg Chem ; 62(39): 15819-15823, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37713645

RESUMEN

A family of thorium complexes featuring the redox-noninnocent pyridinediimine ligand MesPDIMe was synthesized, including (MesPDIMe)ThCl4 (1-Th), (MesPDIMe)ThCl3(THF) (2-Th), (MesPDIMe)ThCl2(THF)2 (3-Th) and [(MesPDIMe)Th(THF)]2 (5-Th) Full characterization of these species shows that these complexes feature MesPDIMe in four different oxidation states. The electronic structures of these complexes have been explored using 1H NMR and electronic absorption spectroscopies, X-ray crystallography, and SQUID magnetometry where appropriate.

3.
Inorg Chem ; 61(16): 6182-6192, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35420825

RESUMEN

The first actinide complexes of the pyridine dipyrrolide (PDP) ligand class, (MesPDPPh)UO2(THF) and (Cl2PhPDPPh)UO2(THF), are reported as the UVI uranyl adducts of the bulky aryl substituted pincers (MesPDPPh)2- and (Cl2PhPDPPh)2- (derived from 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2MesPDPPh, Mes = 2,4,6-trimethylphenyl), and 2,6-bis(5-(2,6-dichlorophenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine (H2Cl2PhPDPPh, Cl2Ph = 2,6-dichlorophenyl), respectively). Following the in situ deprotonation of the proligand with lithium hexamethyldisilazide to generate the corresponding dilithium salts (e.g., Li2ArPDPPh, Ar = Mes of Cl2Ph), salt metathesis with [UO2Cl2(THF)2]2 afforded both compounds in moderate yields. The characterization of each species has been undertaken by a combination of solid- and solution-state methods, including combustion analysis, infrared, electronic absorption, and NMR spectroscopies. In both complexes, single-crystal X-ray diffraction has revealed a distorted octahedral geometry in the solid state, enforced by the bite angle of the rigid meridional (ArPDPPh)2- pincer ligand. The electrochemical analysis of both compounds by cyclic voltammetry in tetrahydrofuran (THF) reveals rich redox profiles, including events assigned as UVI/UV redox couples. A time-dependent density functional theory study has been performed on (MesPDPPh)UO2(THF) and provides insight into the nature of the transitions that comprise its electronic absorption spectrum.

4.
Chem Commun (Camb) ; 60(46): 5956-5959, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38766982

RESUMEN

Np(IV) Lewis base adducts were prepared by ligand substitution of NpCl4(DME)2. Using acetonitrile and pyridine, NpCl4(MeCN)4 (1) and NpCl4(pyr)4 (2) were isolated, respectively. Addition of t-butylbipyridine and triphenylphosphine oxide generated the respective Lewis base adducts, NpCl4(tBuBipy)2 (3) and NpCl4(OPPh3)2 (4). All species were fully characterized using spectroscopic and structural analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA