Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 60(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399619

RESUMEN

Background and Objectives: Advances in virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies have resulted in their increased application across many medical specialties. VR's main application has been for teaching and preparatory roles, while AR has been mostly used as a surgical adjunct. The objective of this study is to discuss the various applications and prospects for VR, AR, and MR specifically as they relate to spine surgery. Materials and Methods: A systematic review was conducted to examine the current applications of VR, AR, and MR with a focus on spine surgery. A literature search of two electronic databases (PubMed and Scopus) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The study quality was assessed using the MERSQI score for educational research studies, QUACS for cadaveric studies, and the JBI critical appraisal tools for clinical studies. Results: A total of 228 articles were identified in the primary literature review. Following title/abstract screening and full-text review, 46 articles were included in the review. These articles comprised nine studies performed in artificial models, nine cadaveric studies, four clinical case studies, nineteen clinical case series, one clinical case-control study, and four clinical parallel control studies. Teaching applications utilizing holographic overlays are the most intensively studied aspect of AR/VR; the most simulated surgical procedure is pedicle screw placement. Conclusions: VR provides a reproducible and robust medium for surgical training through surgical simulations and for patient education through various platforms. Existing AR/MR platforms enhance the accuracy and precision of spine surgeries and show promise as a surgical adjunct.


Asunto(s)
Realidad Aumentada , Cirugía Asistida por Computador , Humanos , Estudios de Casos y Controles , Educación del Paciente como Asunto , Cirugía Asistida por Computador/métodos , Cadáver
2.
Artículo en Inglés | MEDLINE | ID: mdl-38531089

RESUMEN

BACKGROUND AND OBJECTIVE: There are many surgical approaches for execution of a thoracic corpectomy. In cases of challenging deformity, traditional posterior approaches might not be sufficient to complete the resection of the vertebral body. In this technical note, we describe indications and technique for a transdural multilevel high thoracic corpectomy. METHODS: A 25-year-old man with a history of neurofibromatosis type 1 presented with instrumentation failure after a previous T1-T12 posterior spinal fusion, extensive laminectomy, and tumor resection. The patient presented with progressive back pain, had broad dural ectasia, and a progressive kyphotic rotational and anteriorly translated spinal deformity. To resect the medial-most aspect of the vertebral body, a bilateral extracavitary approach was attempted, but was found insufficient. A transdural approach was subsequently performed. A left paramedian durotomy was made, followed by generous arachnoid dissection, bilateral dentate ligament division, and T4 rootlet sacrifice to mobilize the spinal cord. A ventral durotomy was then made and the ventral dura was reflected over the spinal cord to protect it while drilling. The corpectomy was then completed. The ventral and dorsal durotomies were closed primarily and reinforced with fibrin glue and fibrin sealant patch. The corpectomy defect was filled with nonstructural autograft. RESULTS: The focal kyphosis was corrected with a combination of rod contouring, compression, and in situ bending. During the surgery, the patient had stable neuromonitoring data, and postoperatively had no neurological deficits. On follow-up until 1 year, the patient presented with no signs of cerebrospinal spinal leaks, no motor or sensory deficits, minimal incisional pain, and significantly improved posture. CONCLUSION: Complex high thoracic (T3-5) ventral pathology inaccessible via a bilateral extracavitary approach may be accessed via a transdural approach as opposed to an anterior/lateral transthoracic approach that requires mobilization of cardiovascular structures or scapula.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA