Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Inherit Metab Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973597

RESUMEN

The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.

2.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768907

RESUMEN

The variable success in the outcome of randomised controlled trials supplementing coenzyme Q10 (CoQ10) may in turn be associated with a number of currently unresolved issues relating to CoQ10 metabolism. In this article, we have reviewed what is currently known about these factors and where gaps in knowledge exist that need to be further elucidated. Issues addressed include (i) whether the bioavailability of CoQ10 could be improved; (ii) whether CoQ10 could be administered intravenously; (iii) whether CoQ10 could be administered via alternative routes; (iv) whether CoQ10 can cross the blood-brain barrier; (v) how CoQ10 is transported into and within target cells; (vi) why some clinical trials supplementing CoQ10 may have been unsuccessful; and (vii) which is the most appropriate tissue for the clinical assessment of CoQ10 status.


Asunto(s)
Antioxidantes , Ubiquinona , Ubiquinona/metabolismo , Antioxidantes/metabolismo , Disponibilidad Biológica , Transporte Biológico
3.
Bratisl Lek Listy ; 124(2): 89-96, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36598293

RESUMEN

BACKGROUND: SARS-CoV-2 infection is associated with inflammation, decrease in antioxidants and oxidative damage. We aimed to investigate whether ubiquinol, reduced form of coenzyme Q10 (CoQ10), with mountain spa rehabilitation (MR) will contribute to recovering of patients with post-COVID-19 syndrome. METHODS: The study included 36 patients on MR lasting 16-18 days. Twenty­two patients were supplemented with ubiquinol 2x100 mg/day (MRQ), 14 underwent MR without supplementation. The control group consisted of 15 healthy volunteers. Concentrations of total CoQ10 (ubiquinone + ubiquinol), α- and γ-tocopherol were determined in platelets (PLT), in blood and plasma, also ß-carotene was determined. Plasma concentration of thiobarbituric acid­reactive substances (TBARS) was used as the oxidative stress marker. Clinical symptoms were evaluated by questionnaire. RESULTS: MRQ group showed a significant increase in CoQ10, namely in PLT by 68 %, in blood by 194 %, and in plasma by 232 %. In MR group, CoQ10 stayed unchanged. In both groups, the initially increased concentrations of tocopherols in PLT returned nearly to the control values. ß-carotene levels decreased in both groups while TBARS decreased slightly in the MRQ group. More clinical symptoms disappeared in the MRQ group. CONCLUSION: Accelerated recovery of patients with post-COVID-19 syndrome was proven after mountain spa rehabilitation and ubiquinol supplementation. Increased systemic and cellular CoQ10 concentration alleviated clinical symptoms and improved antioxidant protection of the patients. We draw attention to the importance of monitoring and ensuring adequate levels of CoQ10 in post-COVID-19 syndrome (Tab. 2, Fig. 1, Ref. 45). Text in PDF www.elis.sk Keywords: COVID-19, mountain spa rehabilitation, ubiquinol, coenzyme Q10, vitamins, TBARS.


Asunto(s)
COVID-19 , Ubiquinona , Humanos , Ubiquinona/uso terapéutico , Síndrome Post Agudo de COVID-19 , Sustancias Reactivas al Ácido Tiobarbitúrico , beta Caroteno , SARS-CoV-2 , Antioxidantes/uso terapéutico
4.
Proc Natl Acad Sci U S A ; 116(1): 277-286, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30578322

RESUMEN

The mitochondrial intramembrane rhomboid protease PARL has been implicated in diverse functions in vitro, but its physiological role in vivo remains unclear. Here we show that Parl ablation in mouse causes a necrotizing encephalomyelopathy similar to Leigh syndrome, a mitochondrial disease characterized by disrupted energy production. Mice with conditional PARL deficiency in the nervous system, but not in muscle, develop a similar phenotype as germline Parl KOs, demonstrating the vital role of PARL in neurological homeostasis. Genetic modification of two major PARL substrates, PINK1 and PGAM5, do not modify this severe neurological phenotype. Parl-/- brain mitochondria are affected by progressive ultrastructural changes and by defects in Complex III (CIII) activity, coenzyme Q (CoQ) biosynthesis, and mitochondrial calcium metabolism. PARL is necessary for the stable expression of TTC19, which is required for CIII activity, and of COQ4, which is essential in CoQ biosynthesis. Thus, PARL plays a previously overlooked constitutive role in the maintenance of the respiratory chain in the nervous system, and its deficiency causes progressive mitochondrial dysfunction and structural abnormalities leading to neuronal necrosis and Leigh-like syndrome.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Enfermedad de Leigh/etiología , Metaloproteasas/deficiencia , Proteínas Mitocondriales/deficiencia , Ubiquinona/metabolismo , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/fisiopatología , Hígado/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/metabolismo , Encefalomiopatías Mitocondriales/fisiopatología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Vitam Nutr Res ; 92(3-4): 192-203, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32639220

RESUMEN

Ubiquinol, the reduced form of Coenzyme Q10 (CoQ10), is a key factor in bioenergetics and antioxidant protection. During competition, professional soccer players suffer from considerable physical stress causing high risk of muscle damage. For athletes, supplementation with several antioxidants, including CoQ10, is widely recommended to avoid oxidative stress and muscle damage. We performed an observational study of plasma parameters associated with CoQ10 levels in professional soccer players of the Spanish First League team Athletic Club de Bilbao over two consecutive seasons (n = 24-25) in order determine their relationship with damage, stress and performance during competition. We analyzed three different moments of the competition: preterm, initial phase and mid phase. Metabolites and factors related with stress (testosterone/cortisol) and muscle damage (creatine kinase) were determined. Physical activity during matches was analyzed over the 2015/16 season in those players participating in complete matches. In the mid phase of competition, CoQ10 levels were higher in 2015/16 (906.8 ± 307.9 vs. 584.3 ± 196.3 pmol/mL, p = 0.0006) High levels of CoQ10 in the hardest phase of competition were associated with a reduction in the levels of the muscle-damage marker creatine kinase (Pearsons' correlation coefficient (r) = - 0.460, p = 0.00168) and a trend for the stress marker cortisol (r = -0.252, p = 0.150). Plasma ubiquinol was also associated with better kidney function (r = -0.287, p = 0.0443 for uric acid). Furthermore, high CoQ10 levels were associated with higher muscle performance during matches. Our results suggest that high levels of plasma CoQ10 can prevent muscle damage, improve kidney function and are associated with higher performance in professional soccer players during competition.


Asunto(s)
Fútbol , Ubiquinona , Antioxidantes , Atletas , Biomarcadores , Creatina Quinasa , Humanos , Hidrocortisona , Estrés Oxidativo , Fútbol/fisiología , Ubiquinona/análogos & derivados , Ubiquinona/sangre
6.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638552

RESUMEN

Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease's onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.


Asunto(s)
Ataxia/genética , Ataxia/patología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Debilidad Muscular/genética , Debilidad Muscular/patología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/diagnóstico , Exoma/genética , Genoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Mitocondriales/diagnóstico , Debilidad Muscular/diagnóstico , Ubiquinona/análisis , Ubiquinona/biosíntesis , Ubiquinona/genética , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
Biogerontology ; 19(6): 461-480, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30143941

RESUMEN

Mitochondria are key in the metabolism of aerobic organisms and in ageing progression and age-related diseases. Mitochondria are essential for obtaining ATP from glucose and fatty acids but also in many other essential functions in cells including aminoacids metabolism, pyridine synthesis, phospholipid modifications and calcium regulation. On the other hand, the activity of mitochondria is also the principal source of reactive oxygen species in cells. Ageing and chronic age-related diseases are associated with the deregulation of cell metabolism and dysfunction of mitochondria. Cell metabolism is controlled by three major nutritional sensors: mTOR, AMPK and Sirtuins. These factors control mitochondrial biogenesis and dynamics by regulating fusion, fission and turnover through mito- and autophagy. A complex interaction between the activity of these nutritional sensors, mitochondrial biogenesis rate and dynamics exists and affect ageing, age-related diseases including metabolic disease. Further, mitochondria maintain a constant communication with nucleus modulating gene expression and modifying epigenetics. In this review we highlight the importance of mitochondria in ageing and the repercussion in the progression of age-related diseases and metabolic disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedades Metabólicas/metabolismo , Mitocondrias/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Metabolismo Energético , Humanos , Ratones , Modelos Animales , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sirtuinas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
J Physiol ; 594(8): 2043-60, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26607973

RESUMEN

Ageing causes loss of function in tissues and organs, is accompanied by a chronic inflammatory process and affects life- and healthspan. Calorie restriction (CR) is a non-genetic intervention that prevents age-associated diseases and extends longevity in most of the animal models studied so far. CR produces a pleiotropic effect and improves multiple metabolic pathways, generating benefits to the whole organism. Among the effects of CR, modulation of mitochondrial activity and a decrease in oxidative damage are two of the hallmarks. Oxidative damage is reduced by the induction of endogenous antioxidant systems and modulation of the peroxidability index in cell membranes. Mitochondrial activity changes are regulated by inhibition of IGF-1 and Target of Rapamycin (TOR)-dependent activities and activation of AMP-dependent kinase (AMPK) and the sirtuin family of proteins. The activity of PGC-1α and FoxO is regulated by these systems and is involved in mitochondria biogenesis, oxidative metabolism activity and mitochondrial turnover. The use of mimetics and the regulation of common factors have demonstrated that these molecular pathways are essential to explain the effect of CR in the organism. Finally, the anti-inflammatory effect of CR is an interesting emerging factor to be taken into consideration. In the present revision we focus on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Envejecimiento/fisiología , Animales , Humanos , Estrés Oxidativo
9.
Br J Nutr ; 116(6): 979-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27488121

RESUMEN

Decrease in muscle mass and performance with ageing is one of the main factors of frailty in the elderly. Maintenance of muscle performance by involving in physical activities is essential to increase independence and quality of life among elderly. The use of natural compounds with ergogenic activity in old people would increase the effect of moderate exercises in the maintenance of physiological muscle capacity. Resveratrol (RSV), a polyphenol found in walnuts, berries and grapes, shows this ergogenic activity. By using young, mature and old mice as models, we have found that RSV improves muscle performance in mature and old animals but not in young animals. Without showing significant effect by itself, RSV primed the effect of exercise by increasing endurance, coordination and strength in old animals. This effect was accompanied by a higher protection against oxidative damage and an increase in mitochondrial mass. RSV increased catalase and superoxide dismutase protein levels in muscle and primed exercise to reverse the decrease in their activities during ageing. Furthermore, RSV increased the level of mitochondrial mass markers such as cytochrome C, mitochondrial transcription factor A and nuclear respiratory factor-1 in muscle in exercised animals. Our results indicate that RSV can be considered an ergogenic compound that helps maintain muscle performance during ageing and subsequently reduces frailty and increases muscle performance in old individuals practising moderate exercise.


Asunto(s)
Envejecimiento/fisiología , Antiinflamatorios no Esteroideos/farmacología , Condicionamiento Físico Animal , Estilbenos/farmacología , Animales , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Resistencia Física , Resveratrol
10.
RNA Biol ; 13(7): 622-34, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-26690054

RESUMEN

Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.


Asunto(s)
Proteína 1 Similar a ELAV/metabolismo , Regulación de la Expresión Génica/fisiología , Fosforilación Oxidativa , Consumo de Oxígeno/fisiología , Ubiquinona/biosíntesis , Regiones no Traducidas 3'/fisiología , Proteína 1 Similar a ELAV/genética , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Ubiquinona/genética
11.
Biogerontology ; 16(5): 599-620, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26105157

RESUMEN

Ageing is accompanied by the accumulation of damaged molecules in cells due to the injury produced by external and internal stressors. Among them, reactive oxygen species produced by cell metabolism, inflammation or other enzymatic processes are considered key factors. However, later research has demonstrated that a general mitochondrial dysfunction affecting electron transport chain activity, mitochondrial biogenesis and turnover, apoptosis, etc., seems to be in a central position to explain ageing. This key role is based on several effects from mitochondrial-derived ROS production to the essential maintenance of balanced metabolic activities in old organisms. Several studies have demonstrated caloric restriction, exercise or bioactive compounds mainly found in plants, are able to affect the activity and turnover of mitochondria by increasing biogenesis and mitophagy, especially in postmitotic tissues. Then, it seems that mitochondria are in the centre of metabolic procedures to be modified to lengthen life- or health-span. In this review we show the importance of mitochondria to explain the ageing process in different models or organisms (e.g. yeast, worm, fruitfly and mice). We discuss if the cause of aging is dependent on mitochondrial dysfunction of if the mitochondrial changes observed with age are a consequence of events taking place outside the mitochondrial compartment.


Asunto(s)
Envejecimiento/metabolismo , Autofagia , Metabolismo Energético , Mitocondrias/metabolismo , Estrés Oxidativo , Factores de Edad , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Antioxidantes/uso terapéutico , Autofagia/efectos de los fármacos , Restricción Calórica , Metabolismo Energético/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
12.
Biogerontology ; 16(5): 655-70, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25860863

RESUMEN

The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice. We have established four dietary groups: one control group fed 95 % of a pre-determined ad libitum intake (in order to prevent obesity), and three CR groups fed 40 % less than ad libitum intake. Lipid source for the control and one of the CR groups was soybean oil (high in n-6 PUFA) whereas the two remaining CR groups were fed diets containing fish oil (high in n-3 PUFA), or lard (high in saturated and monounsaturated fatty acids). Dietary intervention periods ranged from 1 to 18 months. We performed a longitudinal lifespan study and a cross-sectional study set up to evaluate several mitochondrial parameters which included fatty acid composition, H(+) leak, activities of electron transport chain enzymes, ROS generation, lipid peroxidation, mitochondrial ultrastructure, and mitochondrial apoptotic signaling in liver and skeletal muscle. These approaches applied to different cohorts of mice have independently indicated that lard as a fat source often maximizes the effects of 40 % CR on mice. These effects could be due to significant increases of monounsaturated fatty acids levels, in accordance with the Membrane Theory of Aging.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Mitocondrias Hepáticas/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Factores de Edad , Envejecimiento/patología , Apoptosis , Grasas de la Dieta/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Peroxidación de Lípido , Longevidad , Potencial de la Membrana Mitocondrial , Mitocondrias Hepáticas/ultraestructura , Mitocondrias Musculares/ultraestructura , Modelos Biológicos , Músculo Esquelético/ultraestructura , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja/administración & dosificación , Aceite de Soja/metabolismo , Factores de Tiempo
13.
Aging Clin Exp Res ; 27(6): 775-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25952010

RESUMEN

BACKGROUND: Oxidative stress has been considered one of the causes of aging. For this reason, treatments based on antioxidants or those capable of increasing endogenous antioxidant activity have been taken into consideration to delay aging or age-related disease progression. AIM: In this paper, we determine if resveratrol and exercise have similar effect on the antioxidant capacity of different organs in old mice. METHODS: Resveratrol (6 months) and/or exercise (1.5 months) was administered to old mice. Markers of oxidative stress (lipid peroxidation and glutathione) and activities and levels of antioxidant enzymes (SOD, catalase, glutathione peroxidase, glutathione reductase and transferase and thioredoxin reductases, NADH cytochrome B5-reductase and NAD(P)H-quinone acceptor oxidoreductase) were determined by spectrophotometry and Western blotting in different organs: liver, kidney, skeletal muscle, heart and brain. RESULTS: Both interventions improved antioxidant activity in the major organs of the mice. This induction was accompanied by a decrease in the level of lipid peroxidation in the liver, heart and muscle of mice. Both resveratrol and exercise modulated several antioxidant activities and protein levels. However, the effect of resveratrol, exercise or their combination was organ dependent, indicating that different organs respond in different ways to the same stimulus. CONCLUSIONS: Our data suggest that physical activity and resveratrol may be of great importance for the prevention of age-related diseases, but that their organ-dependent effect must be taken into consideration to design a better intervention.


Asunto(s)
Envejecimiento/fisiología , Actividad Motora/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estilbenos/farmacología , Inhibidores de la Angiogénesis/farmacología , Animales , Antioxidantes/farmacología , Masculino , Ratones , Oxidación-Reducción/efectos de los fármacos , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Resveratrol , Ribonucleótido Reductasas/antagonistas & inhibidores
14.
J Biol Chem ; 288(18): 13082-92, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23479727

RESUMEN

Inorganic pyrophosphatases are required for anabolism to take place in all living organisms. Defects in genes encoding these hydrolytic enzymes are considered inviable, although their exact nature has not been studied at the cellular and molecular physiology levels. Using a conditional mutant in IPP1, the Saccharomyces cerevisiae gene encoding the cytosolic soluble pyrophosphatase, we show that respiring cells arrest in S phase upon Ipp1p deficiency, but they remain viable and resume growth if accumulated pyrophosphate is removed. However, fermenting cells arrest in G1/G0 phase and suffer massive vacuolization and eventual cell death by autophagy. Impaired NAD(+) metabolism is a major determinant of cell death in this scenario because demise can be avoided under conditions favoring accumulation of the oxidized pyridine coenzyme. These results posit that the mechanisms related to excess pyrophosphate toxicity in eukaryotes are dependent on the energy metabolism of the cell.


Asunto(s)
Autofagia/fisiología , Metabolismo Energético/fisiología , Pirofosfatasa Inorgánica/metabolismo , NAD/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Difosfatos/metabolismo , Pirofosfatasa Inorgánica/genética , NAD/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Biogerontology ; 15(2): 199-211, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24384733

RESUMEN

Coenzyme Q (Q) is a key lipidic compound for cell bioenergetics and membrane antioxidant activities. It has been shown that also has a central role in the prevention of oxidation of plasma lipoproteins. Q has been associated with the prevention of cholesterol oxidation and several aging-related diseases. However, to date no clear data on the levels of plasma Q during aging are available. We have measured the levels of plasmatic Q10 and cholesterol in young and old individuals showing different degrees of physical activity. Our results indicate that plasma Q10 levels in old people are higher that the levels found in young people. Our analysis also indicates that there is no a relationship between the degree of physical activity and Q10 levels when the general population is studied. However, very interestingly, we have found a different tendency between Q10 levels and physical activity depending on the age of individuals. In young people, higher activity correlates with lower Q10 levels in plasma whereas in older adults this ratio changes and higher activity is related to higher plasma Q10 levels and higher Q10/Chol ratios. Higher Q10 levels in plasma are related to lower lipoperoxidation and oxidized LDL levels in elderly people. Our results highlight the importance of life habits in the analysis of Q10 in plasma and indicate that the practice of physical activity at old age can improve antioxidant capacity in plasma and help to prevent cardiovascular diseases.


Asunto(s)
Envejecimiento/sangre , Actividad Motora/fisiología , Ubiquinona/análogos & derivados , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antioxidantes/metabolismo , Proteínas Sanguíneas/metabolismo , Colesterol/sangre , Estudios Transversales , Femenino , Humanos , Peroxidación de Lípido , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Carbonilación Proteica , Ubiquinona/sangre , Adulto Joven
16.
Sports (Basel) ; 12(2)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393272

RESUMEN

Research on the evolution of performance throughout a season in team sports is scarce and mainly focused on men's teams. Our aim in this study was to examine the seasonal variations in relevant indices of physical performance in female football players. Twenty-seven female football players were assessed at week 2 of the season (preseason, PS), week 7 (end of preseason, EP), week 24 (half-season, HS), and week 38 (end of season, ES). Similar to the most common used conditioning tests in football, testing sessions consisted of (1) vertical countermovement jump (CMJ); (2) 20 m running sprint (T20); (3) 25 m side-step cutting maneuver test (V-CUT); and (4) progressive loading test in the full-squat exercise (V1-LOAD). Participants followed their normal football training procedure, which consisted of three weekly training sessions and an official match, without any type of intervention. No significant time effects were observed for CMJ height (p = 0.29) and T20 (p = 0.11) throughout the season. However, significant time effects were found for V-CUT (p = 0.004) and V1-LOAD (p = 0.001). V-CUT performance significantly improved from HS to ES (p = 0.001). Significant increases were observed for V1-LOAD throughout the season: PS-HS (p = 0.009); PS-ES (p < 0.001); EP-ES (p < 0.001); and HS-ES (p = 0.009). These findings suggest that, over the course of the season, female football players experience an enhancement in muscle strength and change of direction ability. However, no discernible improvements were noted in sprinting and jumping capabilities during the same period.

17.
Antioxidants (Basel) ; 13(4)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38671943

RESUMEN

Coenzyme Q (CoQ) is a lipidic compound that is widely distributed in nature, with crucial functions in metabolism, protection against oxidative damage and ferroptosis and other processes. CoQ biosynthesis is a conserved and complex pathway involving several proteins. COQ2 is a member of the UbiA family of transmembrane prenyltransferases that catalyzes the condensation of the head and tail precursors of CoQ, which is a key step in the process, because its product is the first intermediate that will be modified in the head by the next components of the synthesis process. Mutations in this protein have been linked to primary CoQ deficiency in humans, a rare disease predominantly affecting organs with a high energy demand. The reaction catalyzed by COQ2 and its mechanism are still unknown. Here, we aimed at clarifying the COQ2 reaction by exploring possible substrate binding sites using a strategy based on homology, comprising the identification of available ligand-bound homologs with solved structures in the Protein Data Bank (PDB) and their subsequent structural superposition in the AlphaFold predicted model for COQ2. The results highlight some residues located on the central cavity or the matrix loops that may be involved in substrate interaction, some of which are mutated in primary CoQ deficiency patients. Furthermore, we analyze the structural modifications introduced by the pathogenic mutations found in humans. These findings shed new light on the understanding of COQ2's function and, thus, CoQ's biosynthesis and the pathogenicity of primary CoQ deficiency.

18.
Biomedicines ; 12(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672238

RESUMEN

Tropomyosin (TM) is a pan-allergen with cross-reactivity to arthropods, insects, and nematodes in tropical regions. While IgE epitopes of TM contribute to sensitization, T-cell (MHC-II) epitopes polarize the Th2 immune response. This study aimed to identify linear B and T consensus epitopes among house dust mites, cockroaches, Ascaris lumbricoides, shrimp, and mosquitoes, exploring the molecular basis of cross-reactivity in allergic diseases. Amino acid sequences of Der p 10, Der f 10, Blo t 10, Lit v 1, Pen a 1, Pen m 1, rAsc l 3, Per a 7, Bla g 7, and Aed a 10 were collected from Allergen Nomenclature and UniProt. B epitopes were predicted using AlgPred 2.0 and BepiPred 3.0. T epitopes were predicted with NetMHCIIpan 4.1 against 10 HLA-II alleles. Consensus epitopes were obtained through analysis and Epitope Cluster Analysis in the Immune Epitope Database. We found 7 B-cell epitopes and 28 linear T-cell epitopes binding to MHC II. A unique peptide (residues 160-174) exhibited overlap between linear B-cell and T-cell epitopes, highly conserved across tropomyosin sequences. These findings shed light on IgE cross-reactivity among the tested species. The described immuno-informatics pipeline and epitopes can inform in vitro research and guide synthetic multi-epitope proteins' design for potential allergology immunotherapies. Further in silico studies are warranted to confirm epitope accuracy and guide future experimental protocols.

19.
Percept Mot Skills ; 131(3): 720-736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523555

RESUMEN

In this study we investigated the relationship between cognitive reserve (CR) proxies, such as education, physical activity (PA), and cognitive dysfunction (CD) in the presence or absence of frontotemporal disorders (FTD). Previous research has suggested that education and PA may delay the onset of CD and reduce the risk of developing dementia. However, it remains unclear whether these CR proxies can protect against CD when FTD is present. We aimed to explore this relationship and determine whether sustained CR may be evident regardless of FTD. We recruited 149 older adults (aged 65-99 years) from community centers where they were voluntarily participating in leisure activities. We used bioelectrical impedance to measure their body composition, and we administered the International PA Questionnaire and the Mini-Mental State Examination to measure their PA and cognitive function, respectively. We used the Frontal Assessment Battery to screen for frontotemporal dementia. Our results showed that people with FTD were older, had lower education, and engaged in less PA, relative to other participants. Regression models revealed that age, education, and PA were significant predictors of FTD. More specifically, FTD was negatively associated with cognitive functioning, and there were significant interaction effects between FTD and education and PA. PA and education were significant predictors of cognitive functioning, and, when values for PA and education were high, they offset the effects of FTD on cognitive function. These findings support impressions that PA and years of education provide an insulating or compensatory effect on cognitive functioning in older adults with executive dysfunction or frontotemporal dementia, highlighting the importance of encouraging both pursuits.


Asunto(s)
Disfunción Cognitiva , Reserva Cognitiva , Escolaridad , Ejercicio Físico , Demencia Frontotemporal , Humanos , Anciano , Reserva Cognitiva/fisiología , Masculino , Femenino , Anciano de 80 o más Años , Ejercicio Físico/fisiología , Ejercicio Físico/psicología , Demencia Frontotemporal/psicología
20.
Biomedicines ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39200359

RESUMEN

BACKGROUND: Evidence suggests that aerobic training with blood flow restriction is beneficial for treating fibromyalgia. This study evaluated the feasibility, safety, and effects of an aerobic training program with blood flow restriction for women with fibromyalgia. METHODS: Thirty-seven women with fibromyalgia were included, and thirteen with an average age of 59 ± 3, a BMI of 26 ± 3, and who were polymedicated started the intervention period. The intervention group performed aerobic exercise with blood flow restriction using occlusive bands placed in the upper part of the rectus femoris, with a total duration of 14 min of restriction divided into two periods of 7 min with a rest period of 3 min and a total session duration of 17 min. Pressure intensity was measured using the visual pain scale (VAS), scoring 7 out of 10 (n = 7). The non-intervention group performed aerobic exercise without restriction of blood flow for the same periods, rest periods, and total duration of the session (n = 6). The intervention included 2 weekly sessions with 72 h between aerobic walking for 9 weeks. Walking was measured individually using the rating of perceived exertion scale (RPE) with an intensity between 6 and 7 out of 10. Visual and verbal support for the VAS and RPE scale was always provided throughout the sessions supervised by the investigator. Functional capacity was assessed using tests (six-minute walk test, incremental shuttle walk test, knee extension and handgrip test by dynamometer, 30 s chair stand test, and timed up-and-go test). Symptomatology was assessed using questionnaires (Widespread Pain Index, Symptom Severity Score, Fibromyalgia Impact Questionnaire, and Multidimensional Fatigue Inventory), and blood samples were collected. RESULTS: There were no adverse effects, and only one participant in the intervention group withdrew. Between-group and intragroup differences showed that the intervention group obtained improvements in the functional tests; CST p = 0.005; 6MWT p = 0.011; Handgrip p = 0.002; TUGT p = 0.002 with reduced impact of the disease according to the questionnaires; FIQ Stiffness p = 0.027 compared with the nonintervention group. Biochemical results remained within normal ranges in both groups. CONCLUSIONS: Blood flow-restricted aerobic training may be feasible, safe, and more effective than unrestricted aerobic training as a physical exercise prescription tool to improve cardiorespiratory fitness, strength, balance, and stiffness in women with fibromyalgia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA