RESUMEN
Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.
Asunto(s)
Leucocitos Mononucleares/citología , Linfocitos T/inmunología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Técnicas de Cultivo de Célula , Técnicas de Cocultivo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Femenino , Humanos , Técnicas In Vitro , Interferón gamma/farmacología , Leucocitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Activación de Linfocitos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Células Tumorales CultivadasRESUMEN
Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI. Here, a high-performance nanotracer based on shape anisotropy of magnetic nanoparticles is developed and its use in MPI imaging of the lung is demonstrated. Shape anisotropy proves to be a critical parameter for increasing signal intensity and resolution and exceeding those properties of conventional spherical nanoparticles. The 0D nanoparticles exhibit a 2-fold increase, while the 1D nanorods have a > 5-fold increase in signal intensity when compared to VivoTrax. Newly designed 1D nanorods displayed high signal intensities and excellent resolution in lung images. A spatiotemporal lung imaging study in mice revealed that this tracer offers new opportunities for monitoring disease and guiding intervention.
Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Ratones , Animales , Anisotropía , Diagnóstico por Imagen/métodos , Magnetismo , Fenómenos Magnéticos , Imagen por Resonancia MagnéticaRESUMEN
Endometriosis is one of the most common causes of chronic pelvic pain and infertility that affects 10% of women of reproductive age. It is currently defined as the presence of endometrial epithelial and stromal cells at ectopic sites; however, advances in endometriosis research have some authors believing that endometriosis should be re-defined as "a fibrotic condition in which endometrial stroma and epithelium can be identified". microRNAs (miRNAs) are regulatory molecules that potentially play a role in endometriotic lesion development. There is evidence that suggests that miRNAs, including microRNA-21 (miR-21), participate in fibrotic processes in different organs, including the heart, kidney, liver and lungs. The objective of this study was to understand the role of miR-21 and the mechanisms that can contribute to the development of fibrosis by determining how IL-6 regulates miR-21 expression and how this miRNA regulates the transforming growth factor beta (TGF-ß) signaling pathway to promote fibrosis. We investigated the expression of miR-21 in the baboon and mouse model of endometriosis and its correlation with fibrosis. We demonstrated that inflammation and fibrosis are present at a very early stage of endometriosis and that the inflammatory environment in the peritoneal cavity, which includes interleukin 6 (IL-6), can regulate the expression of miR-21 in vitro and in vivo.
Asunto(s)
Endometriosis , Fibrosis , Interleucina-6 , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Endometriosis/genética , Endometriosis/metabolismo , Endometriosis/patología , Animales , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Humanos , Regulación de la Expresión Génica , Papio , Endometrio/metabolismo , Endometrio/patología , Transducción de Señal , Modelos Animales de Enfermedad , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Although microRNAs (miRNAs) are among the most intensively studied molecules of the past 20 years, determining what is and what is not a miRNA has not been straightforward. Here, we present a uniform system for the annotation and nomenclature of miRNA genes. We show that less than a third of the 1,881 human miRBase entries, and only approximately 16% of the 7,095 metazoan miRBase entries, are robustly supported as miRNA genes. Furthermore, we show that the human repertoire of miRNAs has been shaped by periods of intense miRNA innovation and that mature gene products show a very different tempo and mode of sequence evolution than star products. We establish a new open access database--MirGeneDB ( http://mirgenedb.org )--to catalog this set of miRNAs, which complements the efforts of miRBase but differs from it by annotating the mature versus star products and by imposing an evolutionary hierarchy upon this curated and consistently named repertoire.
Asunto(s)
Evolución Biológica , MicroARNs/genética , Anotación de Secuencia Molecular/métodos , Vertebrados/genética , Animales , Bases de Datos Genéticas , Evolución Molecular , Humanos , Terminología como AsuntoRESUMEN
PURPOSE: Surgery of primary thyroid lymphoma (PTL) has been mostly limited to diagnostic work-up. This study aimed to further study its potential role. METHODS: This was a retrospective study from a multi-institutional registry of PTL patients. Clinical, diagnostic work-up (fine needle aspiration, FNA; core needle biopsy, CoreNB), contribution of surgery (open surgical biopsy, OpenSB; thyroidectomy), histology subtype, and outcome data were evaluated. RESULTS: Some 54 patients were studied. Diagnostic work-up included FNA in 47 patients, CoreNB in 11, and OpenSB in 21. CoreNB yielded the best sensitivity (90.9%). Thyroidectomy was performed in 14 patients with other diagnosis (incidental PTL), in 4 for diagnosis and in 4 for elective treatment of PTL. Incidental PTL was associated with not performed FNA nor CoreNB (OR 52.5; P = 0.008), mucosa-associated lymphoid tissue (MALT) subtype (OR 24.3; P = 0.012), and Hashimoto's thyroiditis (OR 11.1; P = 0.032). Lymphoma-related death (10 cases) mostly occurred within the first year after diagnosis and was associated with diffuse large B-cell (DLBC) subtype (OR 10.3; P = 0.018) and older patients (OR 1.08 for every 1-year increase; P = 0.010). There was a trend towards lower mortality rate in patients receiving thyroidectomy (2/22 versus 8/32, P = 0.172). CONCLUSION: Incidental PTL accounts for most of thyroid surgery cases and are associated with incomplete diagnostic work-up, Hashimoto's thyroiditis and MALT subtype. CoreNB appears to be the best tool for diagnosis. Most of PTL deaths occurred during the first year after diagnosis and mostly related to systemic treatment. Age and DLBC subtype are poor prognostic factors.
Asunto(s)
Linfoma , Neoplasias de la Tiroides , Tiroiditis , Humanos , Estudios RetrospectivosRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell-intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types' function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-ß, JAK/STAT, PI3K/AKT, and NF-κB.
Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinasas , Microambiente Tumoral/genéticaRESUMEN
In cancer research, genomic profiles are often extracted from homogenized macrodissections of tissues, with the histological context lost and a large fraction of material underutilized. Pertinently, the spatial genomic landscape provides critical complementary information in deciphering disease heterogeneity and progression. Microscale sampling methods such as microdissection to obtain such information are often destructive to a sizeable fraction of the biopsy sample, thus showing limited multiplexability and adaptability to different assays. A modular microfluidic technology is here implemented to recover cells at the microscale from tumor tissue sections, with minimal disruption of unsampled areas and tailored to interface with genome profiling workflows, which is directed here toward evaluating intratumoral genomic heterogeneity. The integrated workflow-GeneScape-is used to evaluate heterogeneity in a metastatic mammary carcinoma, showing distinct single nucleotide variants and copy number variations in different tumor tissue regions, suggesting the polyclonal origin of the metastasis as well as development driven by multiple location-specific drivers.
Asunto(s)
Neoplasias de la Mama , Variaciones en el Número de Copia de ADN , Neoplasias de la Mama/genética , Femenino , Genómica , Humanos , Mutación , Flujo de TrabajoRESUMEN
The microenvironment of pancreatic cancer adenocarcinoma (PDAC) is highly desmoplastic with distinct tumor-restraining and tumor-promoting fibroblast subpopulations. Re-education rather than indiscriminate elimination of these fibroblasts has emerged as a new strategy for combination therapy. Here, we studied the effects of global loss of profibrotic noncoding regulatory microRNA-21 (miR-21) in K-Ras-driven p53-deleted genetically engineered mouse models of PDAC. Strikingly, loss of miR-21 accelerated tumor initiation via mucinous cystic neoplastic lesions and progression to locally advanced invasive carcinoma from which animals precipitously succumbed at an early age. The absence of tumor-restraining myofibroblasts and a massive infiltrate of immune cells were salient phenotypic features of global miR-21 loss. Stromal miR-21 activity was required for induction of tumor-restraining myofibroblasts in in vivo isograft transplantation experiments. Low miR-21 expression negatively correlated with a fibroblast gene expression signature and positively with an immune cell gene expression signature in The Cancer Genome Atlas PDAC data set (n = 156) mirroring findings in the mouse models. Our results exposed an overall tumor-suppressive function of miR-21 in in vivo PDAC models. These results have important clinical implications for anti-miR-21-based inhibitory therapeutic approaches under consideration for PDAC and other cancer types. Mechanistic dissection of the cell-intrinsic role of miR-21 in cancer-associated fibroblasts and other cell types will be needed to inform best strategies for pharmacological modulation of miR-21 activity to remodel the tumor microenvironment and enhance treatment response in PDAC.
Asunto(s)
MicroARNs/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Transcriptoma/genética , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMEN
BACKGROUND AND PURPOSE: Endovascular therapy (EVT) has become standard care for acute ischaemic stroke caused by large-vessel occlusion in the anterior circulation. However, access to this treatment in Europe remains poor. The lack of operators is a contributing factor and there is on-going discussion as to whether other specialists, including neurologists, could contribute to the EVT workforce. The question remains whether the next generation of neurologists want to become 'interventional neurologists'. The aim of this study was to address this question. METHODS: We conducted a short survey within the National Representatives Network (a division of the Resident and Research Fellow Section, European Academy of Neurology) in order to determine the interest of future neurologists in performing EVT. RESULTS: A total of 1218 responses from 27 European countries were received, with some variation in the number of respondents and results among individual countries. In total, 568 neurology trainees (47%) stated that they would want to be an 'interventional neurologist'. CONCLUSION: Our findings suggest that neurologists could make a significant contribution to the workforce performing EVT and have important implications for the development and uptake of training programmes in Europe.
Asunto(s)
Procedimientos Endovasculares , Neurología , Isquemia Encefálica , Europa (Continente) , Humanos , Accidente Cerebrovascular/terapia , TrombectomíaRESUMEN
INTRODUCTION: Atypical teratoid/rhabdoid tumor (AT/RT) is a rare tumor of the central nervous system, especially when involving the spinal column or spinal cord. CASE PRESENTATION: We present a case of a 5-year-old girl with progressive bilateral lower extremity pain found to have a discrete nodular lesion of the conus with mild heterogeneous enhancement. Surgical decompression and resection demonstrated a pathologic tumor consistent with AT/RT with loss of INI1 protein on immunohistochemistry. DISCUSSION AND CONCLUSION: AT/RT lesions of the conus medullaris are exceedingly rare and associated with extensive disease. We report a rare case of AT/RT with selective involvement of the conus medullaris, as well as describe the surgical, radiographic, and pathologic findings of this tumor.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Neoplasias de la Médula Espinal , Preescolar , Descompresión Quirúrgica , Femenino , Humanos , Tumor Rabdoide/diagnóstico por imagen , Tumor Rabdoide/cirugía , Neoplasias de la Médula Espinal/diagnóstico por imagen , Neoplasias de la Médula Espinal/cirugíaRESUMEN
BACKGROUND: Prophylactic mastectomy is the most effective intervention to prevent breast cancer. However, this major surgery has life-changing consequences at the physical, emotional, psychological, and social levels. Therefore, only high-risk individuals consider this aggressive procedure, which completely removes the mammary epithelial cells from which breast cancer arises along with surrounding tissue. Here, we seek to develop a minimally invasive procedure as an alternative to prophylactic mastectomy by intraductal (ID) delivery of a cell-killing solution that locally ablates the mammary epithelial cells before they become malignant. METHODS: After ID injection of a 70% ethanol-containing solution in FVB/NJ female animals, ex vivo dual stained whole-mount tissue analysis and in vivo X-ray microcomputed tomography imaging were used to visualize ductal tree filling, and histological and multiplex immunohistochemical assays were used to characterize ablative effects and quantitate the number of intact epithelial cells and stroma. After ID injection of 70% ethanol or other solutions in cancer-prone FVB-Tg-C3(1)-TAg female animals, mammary glands were palpated weekly to establish tumor latency and examined after necropsy to record tumor incidence. Statistical difference in median tumor latency and tumor incidence between experimental groups was analyzed by log-rank test and logistic mixed-effects model, respectively. RESULTS: We report that ID injection of 70% ethanol effectively ablates the mammary epithelia with limited collateral damage to surrounding stroma and vasculature in the murine ductal tree. ID injection of 70% ethanol into the mammary glands of the C3(1)-TAg multifocal breast cancer model significantly delayed tumor formation (median latency of 150 days in the untreated control group [n = 25] vs. 217 days in the ethanol-treated group [n = 13], p value < 0.0001) and reduced tumor incidence (34% of glands with tumors [85 of 250] in the untreated control group vs. 7.3% of glands with tumor [7 of 95] in the ethanol-treated group, risk ratio = 4.76 [95% CI 1.89 to 11.97, p value < 0.0001]). CONCLUSIONS: This preclinical study demonstrates the feasibility of local ductal tree ablation as a novel strategy for primary prevention of breast cancer. Given the existing clinical uses of ethanol, ethanol-based ablation protocols could be readily implemented in first-in-human clinical trials for high-risk individuals.
Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Quimioembolización Terapéutica , Etanol/administración & dosificación , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Animales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/mortalidad , Quimioembolización Terapéutica/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Inmunohistoquímica , Glándulas Mamarias Animales/diagnóstico por imagen , Ratones , Sobrevida , Resultado del Tratamiento , Microtomografía por Rayos XRESUMEN
In 1993, the Ambros lab reported the cloning and developmental function of lin-4, the first microRNA [...].
Asunto(s)
MicroARNs/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Neoplasias Colorrectales/genética , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Hematológicas/genética , Hematopoyesis , Humanos , Neoplasias Hepáticas/genéticaRESUMEN
We have developed a method for spatially resolved genetic analysis of formalin-fixed paraffin-embedded (FFPE) cell block and tissue sections. This method involves local sampling using hydrodynamic flow confinement of a lysis buffer, followed by electrokinetic purification of nucleic acids from the sampled lysate. We characterized the method by locally sampling an array of points with a circa 200â µm diameter footprint, enabling the detection of single KRAS and BRAF point mutations in small populations of RKO and MCF-7 FFPE cell blocks. To illustrate the utility of this approach for genetic analysis, we demonstrate spatially resolved genotyping of FFPE sections of human breast invasive ductal carcinoma.
Asunto(s)
Neoplasias de la Mama/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias de la Mama/patología , ADN de Neoplasias/análisis , ADN de Neoplasias/metabolismo , Femenino , Formaldehído/química , Genotipo , Humanos , Células MCF-7 , Microscopía Confocal , Adhesión en Parafina , Mutación Puntual , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS: Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS: Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS: These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.
Asunto(s)
Citocinas/metabolismo , Gliosis/etiología , Gliosis/prevención & control , Malaria Cerebral/complicaciones , Vasculitis del Sistema Nervioso Central/etiología , Amoníaco/sangre , Animales , Anticuerpos/uso terapéutico , Anticoagulantes/uso terapéutico , Vasos Sanguíneos/patología , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/tratamiento farmacológico , Heparina/uso terapéutico , Interleucina-10/genética , Interleucina-10/metabolismo , Leucocitos/patología , Hígado/metabolismo , Hígado/patología , Malaria Cerebral/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasmodium chabaudi/fisiología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Vasculitis del Sistema Nervioso Central/tratamiento farmacológico , Vasculitis del Sistema Nervioso Central/parasitologíaRESUMEN
Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.
RESUMEN
BACKGROUND: Cerebral malaria is one of the most severe complications of Plasmodium falciparum infection and occurs mostly in young African children. This syndrome results from a combination of high levels of parasitaemia and inflammation. Although parasite sequestration in the brain is a feature of the human syndrome, sequestering strains do not uniformly cause severe malaria, suggesting interplay with other factors. Host genetic factors such as mutations in the promoters of the cytokines IL-10 and TNF are also clearly linked to severe disease. Plasmodium chabaudi, a rodent malaria parasite, leads to mild illness in wildtype animals. However, IL-10(-/-) mice respond to parasite with increased levels of pro-inflammatory cytokines IFN-γ and TNF, leading to lethal disease in the absence of sequestration in the brain. These mice also exhibit cerebral symptoms including gross cerebral oedema and haemorrhage, allowing study of these critical features of disease without the influence of sequestration. METHODS: The neurological consequences of P. chabaudi infection were investigated by performing a general behavioural screen (SHIRPA). The immune cell populations found in the brain during infection were also analysed using flow cytometry and confocal microscopy. RESULTS: IL-10(-/-) mice suffer significant declines in behavioural and physical capacities during infection compared to wildtype. In addition, grip strength and pain sensitivity were affected, suggestive of neurological involvement. Several immune cell populations were identified in the perfused brain on day 7 post-infection, suggesting that they are tightly adherent to the vascular endothelium, or potentially located within the brain parenchyma. There was an increase in both inflammatory monocyte and resident macrophage (CD11b(hi), CD45(+), MHCII(+), Ly6C(+/-)) numbers in IL-10(-/-) compared to wildtype animals. In addition, the activation state of all monocytes and microglia (CD11b(int), CD45(-), MHC-II(+)) were increased. T cells making IFN-γ were also identified in the brain, but were localized within the vasculature, and not the parenchyma. CONCLUSIONS: These studies demonstrate exacerbated neuroinflammation concurrent with development of behavioural symptoms in P. chabaudi infection of IL-10(-/-) animals.
Asunto(s)
Conducta Animal , Inflamación/patología , Interleucina-10/deficiencia , Malaria Cerebral/complicaciones , Malaria Cerebral/patología , Trastornos Mentales/etiología , Plasmodium chabaudi/crecimiento & desarrollo , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Humanos , Leucocitos/inmunología , Malaria Cerebral/parasitología , Masculino , Ratones Endogámicos C57BL , Microscopía ConfocalRESUMEN
Bladder cancer is the fourth most common cancer among men in the United States and more than half of patients experience recurrences within 5 years after initial diagnosis. Additional clinically informative and actionable biomarkers of the recurrent bladder cancer phenotypes are needed to improve screening and molecular therapeutic approaches for recurrence prevention. MicroRNA-34a (miR-34a) is a short noncoding regulatory RNA with tumor suppressive attributes. We leveraged our unique, large, population-based prognostic study of bladder cancer in New Hampshire, United States to evaluate miR-34a expression levels in individual tumor cells to assess prognostic value. We collected detailed exposure and medical history data, as well as tumor tissue specimens from bladder patients and followed them long-term for recurrence, progression and survival. Fluorescence-based in situ hybridization assays were performed on urothelial carcinoma tissue specimens (n = 229). A larger proportion of the nonmuscle invasive tumors had high levels of miR-34a within the carcinoma cells compared to those tumors that were muscle invasive. Patients with high miR-34a levels in their baseline nonmuscle invasive tumors experienced lower risks of recurrence (adjusted hazard ratio 0.57, 95% confidence interval 0.34-0.93). Consistent with these observations, we demonstrated a functional tumor suppressive role for miR-34a in cultured urothelial cells, including reduced matrigel invasion and growth in soft agar. Our results highlight the need for further clinical studies of miR-34a as a guide for recurrence screening and as a possible candidate therapeutic target in the bladder.
Asunto(s)
MicroARNs/genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Urotelio/metabolismo , Adulto , Anciano , Línea Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , New Hampshire , Pronóstico , Neoplasias de la Vejiga Urinaria/metabolismo , Urotelio/patologíaRESUMEN
Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.
Asunto(s)
Técnica del Anticuerpo Fluorescente/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis por Matrices de Proteínas/métodos , Algoritmos , Anticuerpos/análisis , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Programas InformáticosRESUMEN
Triple-negative breast cancer (TNBC) is an aggressive subtype defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Expression of miR-21, an oncomiR, is frequently altered and may be distinctly expressed in the tumor stroma. Because tumor lesions are a complex mixture of cell types, we hypothesized that analysis of miR-21 expression at single-cell resolution could provide more accurate information to assess disease recurrence risk and BC-related death. We implemented a fully automated, tissue slide-based assay to detect miR-21 expression in 988 patients with BC. The miR-21(High) group exhibited shorter recurrence-free survival [hazard ratio (HR), 1.71; P < 0.001] and BC-specific survival (HR, 1.96; P < 0.001) in multivariate regression analyses. When tumor compartment and levels of miR-21 expression were considered, significant associations with poor clinical outcome were detected exclusively in tumor epithelia from estrogen receptor- and/or progesterone receptor-positive human epidermal growth factor receptor 2-negative cases [recurrence-free survival: HR, 3.67 (P = 0.006); BC-specific survival: HR, 5.13 (P = 0.002)] and in tumor stroma from TNBC cases [recurrence-free survival: HR, 2.59 (P = 0.013); BC-specific survival: HR, 3.37 (P = 0.003)]. These findings suggest that the context of altered miR-21 expression provides clinically relevant information. Importantly, miR-21 expression was predominantly up-regulated and potentially prognostic in the tumor stroma of TNBC.