Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Phys Chem Chem Phys ; 25(32): 21521-21527, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545317

RESUMEN

Two-dimensional antiferromagnetic (AFM) materials with an intrinsic semiconductivity, a high critical temperature, and a sizable magnetic anisotropy energy (MAE) have attracted extensive attention because they show promise for high-performance spintronic nanodevices. Here, we have identified a new FeCN2 monolayer with a unique zigzag Fe chain through first-principles swarm structural search calculations. It is an AFM semiconductor with a direct band gap of 2.04 eV, a Néel temperature (TN) of 176 K, and a large in-plane MAE of 0.50 meV per Fe atom. More interestingly, the intrinsic antiferromagnetism, contributed by the strong magnetic coupling of neighbouring Fe ions, can be maintained under the external biaxial strains. A large cohesive energy and high dynamical stability favor synthesis and application. Therefore, these fascinating properties of the FeCN2 monolayer make it a promising nanoscale spintronic material.

2.
Phys Chem Chem Phys ; 25(47): 32416-32420, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010895

RESUMEN

Two-dimensional magnetic materials have demonstrated favorable properties (e.g., large spin polarization and net magnetization) for the development of next-generation spintronic devices. The discovery of such materials and insight into their magnetic coupling mechanism has become a research focus. Here, on the basis of first-principles structural search calculations, we have identified a fresh FeCN monolayer consisting of edge-sharing Fe triangle sublattices and FeC3N2 rings, which integrates antiferromagnetism, semiconductivity, and planarity. Interestingly, it possesses a large magnetic anisotropy energy (MAE) of 614 µeV per Fe atom, a narrow band gap (Eg) of 0.47 eV, a large magnetic moment of 3.15 µB, and a proper Néel temperature (TN) of 97 K. The direct exchange between the nearest-neighbor Fe atoms in the triangle sublattice is mainly responsible for the AFM ordering. Its high structural stability, stemming from the collective contribution of covalent C-C and C-N bonds, ionic Fe-N bonds, and metallic Fe-Fe bonds, provides a strong feasibility for experimental synthesis.

3.
J Virol ; 94(20)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32759318

RESUMEN

A cascade of protein-protein interactions between four herpes simplex virus (HSV) glycoproteins (gD, gH/gL, and gB) drive fusion between the HSV envelope and host membrane, thereby allowing for virus entry and infection. Specifically, binding of gD to one of its receptors induces a conformational change that allows gD to bind to the regulatory complex gH/gL, which then activates the fusogen gB, resulting in membrane fusion. Using surface plasmon resonance and a panel of anti-gD monoclonal antibodies (MAbs) that sterically blocked the interaction, we previously showed that gH/gL binds directly to gD at sites distinct from the gD receptor binding site. Here, using an analogous strategy, we first evaluated the ability of a panel of uncharacterized anti-gH/gL MAbs to block binding to gD and/or inhibit fusion. We found that the epitopes of four gD-gH/gL-blocking MAbs were located within flexible regions of the gH N terminus and the gL C terminus, while the fifth was placed around gL residue 77. Taken together, our data localized the gD binding region on gH/gL to a group of gH and gL residues at the membrane distal region of the heterodimer. Surprisingly, a second set of MAbs did not block gD-gH/gL binding but instead stabilized the complex by altering the kinetic binding. However, despite this prolonged gD-gH/gL interaction, "stabilizing" MAbs also inhibited cell-cell fusion, suggesting a unique mechanism by which the fusion process is halted. Our findings support targeting the gD-gH/gL interaction to prevent fusion in both therapeutic and vaccine strategies against HSV.IMPORTANCE Key to developing a human HSV vaccine is an understanding of the virion glycoproteins involved in entry. HSV employs multiple glycoproteins for attachment, receptor interaction, and membrane fusion. Determining how these proteins function was resolved, in part, by structural biology coupled with immunological and biologic evidence. After binding, virion gD interacts with a receptor to activate the regulator gH/gL complex, triggering gB to drive fusion. Multiple questions remain, one being the physical location of each glycoprotein interaction site. Using protective antibodies with known epitopes, we documented the long-sought interaction between gD and gH/gL, detailing the region on gD important to create the gD-gH/gL triplex. Now, we have identified the corresponding gD contact sites on gH/gL. Concurrently we discovered a novel mechanism whereby gH/gL antibodies stabilize the complex and inhibit fusion progression. Our model for the gD-gH/gL triplex provides a new framework for studying fusion, which identifies targets for vaccine development.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Antivirales/química , Fusión de Membrana , Células Sf9 , Spodoptera , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/genética
4.
Phys Chem Chem Phys ; 23(11): 6455-6461, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33725035

RESUMEN

The exploration of novel intermetallic compounds is of great significance for basic research and practical application. Considering the interesting and diverse attributes of Na and Au, their large electronegative difference, and the unresolved high-pressure Na-Au structures, first-principles swarm-intelligence structural search calculations are employed to explore the potential Na-Au compounds at high pressures. Besides reproducing the known Na-Au compounds, eleven new phases are disclosed, exhibiting several unprecedented Au atomic arrangements, such as rectangular ladder, layer formed by edge-sharing squares, hexahedron framework, and diamond-like skeleton, enriching the understanding of Au chemistry. Moreover, the coordination number of Au can be effectively modulated by controlling Na composition. In the Na-rich compounds (Na4Au, Na5Au, and Na6Au), Au shows a formal charge beyond -2, acting as a 6p-block element, originating from pressure-induced unusual Na 3s or 3p → Au 6p charge transfer. These compounds are metallic, but not superconductive. Moreover, the good agreement between the experimental XRD patterns and the simulated ones allows us to assign the predicted P6/mmm Na2Au and Fm3[combining macron]m Na3Au as the experimental structures at 59.6 GPa. Our work indicates that the modulation of pressure and chemical composition is a useful way to stabilize novel intermetallic compounds.

5.
J Virol ; 93(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31092568

RESUMEN

Herpes simplex virus (HSV) requires fusion between the viral envelope and host membrane. Four glycoproteins, gD, gH/gL, and gB, are essential for this process. To initiate fusion, gD binds its receptor and undergoes a conformational change that hypothetically leads to activation of gH/gL, which in turn triggers the fusion protein gB to undergo rearrangements leading to membrane fusion. Our model predicts that gD must interact with both its receptor and gH/gL to promote fusion. In support of this, we have shown that gD is structurally divided into two "faces": one for the binding receptor and the other for its presumed interaction with gH/gL. However, until now, we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used surface plasmon resonance to show that the ectodomain of gH/gL binds directly to the ectodomain of gD when (i) gD is captured by certain anti-gD monoclonal antibodies (MAbs) that are bound to a biosensor chip, (ii) gD is bound to either one of its receptors on a chip, and (iii) gD is covalently bound to the chip surface. To localize the gH/gL binding site on gD, we used multiple anti-gD MAbs from six antigenic communities and determined which ones interfered with this interaction. MAbs from three separate communities block gD-gH/gL binding, and their epitopes encircle a geographical area on gD that we propose comprises the gH/gL binding domain. Together, our results show that gH/gL interacts directly with gD, supporting a role for this step in HSV entry.IMPORTANCE HSV entry is a multistep process that requires the actions of four glycoproteins, gD, gH/gL, and gB. Our current model predicts that gD must interact with both its receptor and gH/gL to promote viral entry. Although we know a great deal about how gD binds its receptors, until now we have been unable to demonstrate a direct interaction between gD and gH/gL. Here, we used a highly sensitive surface plasmon resonance technique to clearly demonstrate that gD and gH/gL interact. Furthermore, using multiple MAbs with defined epitopes, we have delineated a domain on gD that is independent of that used for receptor binding and which likely represents the gH/gL interaction domain. Targeting this interaction to prevent fusion may enhance both therapeutic and vaccine strategies.


Asunto(s)
Herpesvirus Humano 1/fisiología , Mapas de Interacción de Proteínas , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Sitios de Unión , Unión Proteica , Resonancia por Plasmón de Superficie
6.
Phys Chem Chem Phys ; 22(45): 26189-26199, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33196067

RESUMEN

Two-dimensional Mo2C materials (1T and 2H phases) have emerged as promising electrocatalysts for the hydrogen evolution reaction (HER) due to their low cost, inherent metallicity, and high stability. Unfortunately, the catalytic activity of Mo2C is lower than that of Pt, and it needs to be substantially improved for practical applications. It is necessary and urgent to consider the effect of synergetic interactions among defects, functions, and strain on the HER activity. In this study, the geometric structures, electronic properties, and the HER activity of the Mo2C monolayer, with vacancy defects (i.e. Mo and C), oxygen functionalization, and strain, are studied by using first-principles calculations. According to our results, the combination of Mo vacancies, which can be obtained under C-rich conditions, and oxygen functionalization is the most effective way to improve the HER activity of 1T- and 2H-Mo2C. Considering the abundant active sites and optimal Gibbs free energy of hydrogen adsorption, the 1T phase we obtained shows excellent HER activity even at high H coverage and improves the utilization of active sites, for which the HER activity is comparable to that of Pt. This can be attributed to the fact that oxygen atoms gain more electrons from Mo2C, which weakens the strength of the O-H bond. Our work provides not only an opportunity to better understand the catalytic mechanism, but also a guide to achieving high HER activity of a Mo2C monolayer.

7.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30282715

RESUMEN

HSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two "faces" on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCE Virus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Simplexvirus/fisiología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Antivirales/farmacología , Sitios de Unión/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Mapeo Epitopo , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Células Vero , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos
8.
PLoS Pathog ; 13(6): e1006430, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28614387

RESUMEN

While HSV-2 typically causes genital lesions, HSV-1 is increasingly the cause of genital herpes. In addition, neonatal HSV infections are associated with a high rate of mortality and HSV-2 may increase the risk for HIV or Zika infections, reinforcing the need to develop an effective vaccine. In the GSK Herpevac trial, doubly sero-negative women were vaccinated with a truncated form of gD2 [gD2(284t)], then examined for anti-gD serum titers and clinical manifestations of disease. Surprisingly, few vaccinees were protected against genital HSV-2 but 86% were protected from genital HSV-1. These observations suggest that subtle differences in gD structure might influence a protective response. To better understand the antigenic structure of gD and how it impacts a protective response, we previously utilized several key anti-gD monoclonal antibodies (mAbs) to dissect epitopes in vaccinee sera. Several correlations were observed but the methodology limited the number of sera and mAbs that could be tested. Here, we used array-based surface plasmon imaging (SPRi) to simultaneously measure a larger number of protein-protein interactions. We carried out cross-competition or "epitope binning" studies with 39 anti-gD mAbs and four soluble forms of gD, including a form [gD2(285t)] that resembles the Herpevac antigen. The results from these experiments allowed us to organize the mAbs into four epitope communities. Notably, relationships within and between communities differed depending on the form of gD, and off-rate analysis suggested differences in mAb-gD avidity depending on the gD serotype and length. Together, these results show that gD1 and gD2 differ in their structural topography. Consistent with the Herpevac results, several mAbs that bind both gD1 and gD2 neutralize only HSV-1. Thus, this technology provides new insights into the antigenic structure of gD and provides a rationale as to how vaccination with a gD2 subunit may lead to protection from HSV-1 infection.


Asunto(s)
Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 2/inmunología , Resonancia por Plasmón de Superficie/métodos , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/química , Antígenos Virales/inmunología , Herpesvirus Humano 1/química , Herpesvirus Humano 2/química , Vacunas contra Herpesvirus/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas del Envoltorio Viral/química
9.
J Virol ; 89(18): 9213-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109729

RESUMEN

UNLABELLED: Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. IMPORTANCE: We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Epítopos/inmunología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 2/inmunología , Inmunoglobulina G/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Especificidad de Anticuerpos , Chlorocebus aethiops , Reacciones Cruzadas , Epítopos/química , Herpesvirus Humano 1/química , Herpesvirus Humano 2/química , Humanos , Inmunoglobulina G/inmunología , Ratones , Células Vero
10.
J Virol ; 88(21): 12612-22, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142599

RESUMEN

UNLABELLED: Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE: Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines.


Asunto(s)
Anticuerpos Antivirales/sangre , Glicoproteínas/inmunología , Herpes Simple/inmunología , Simplexvirus/inmunología , Proteínas Estructurales Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Formación de Anticuerpos , Humanos , Inmunoglobulina G/sangre , Ratones
11.
J Virol ; 88(5): 2677-89, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352457

RESUMEN

UNLABELLED: Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE: For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Dominios y Motivos de Interacción de Proteínas/inmunología , Simplexvirus/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Línea Celular , Chlorocebus aethiops , Mapeo Epitopo , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Liposomas/química , Liposomas/metabolismo , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Simplexvirus/genética , Células Vero , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética
12.
J Virol ; 88(14): 7786-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24789783

RESUMEN

The results of a clinical trial of a subunit vaccine against genital herpes were recently reported (R. B. Belshe, P. A. Leone, D. I. Bernstein, A. Wald, M. J. Levin, J. T. Stapleton, I. Gorfinkel, R. L. Morrow, M. G. Ewell, A. Stokes-Riner, G. Dubin, T. C. Heineman, J. M. Schulte, C. D. Deal, N. Engl. J. Med. 366: 34-43, 2012, doi:10.1056/NEJMoa1103151). The vaccine consisted of a soluble form of herpes simplex virus 2 (HSV-2) glycoprotein D (gD2) with adjuvant. The goal of the current study was to examine the composition of the humoral response to gD2 within a selected subset of vaccinated individuals. Serum samples from 30 vaccine recipients were selected based upon relative enzyme-linked immunosorbent assay (ELISA) titers against gD2; 10 samples had high titers, 10 had medium titers, and the remaining 10 had low ELISA titers. We employed a novel, biosensor-based monoclonal antibody (MAb)-blocking assay to determine whether gD2 vaccination elicited IgG responses against epitopes overlapping those of well-characterized MAbs. Importantly, IgGs from the majority of gD2-immunized subjects competed for gD binding with four antigenically distinct virus-neutralizing MAbs (MC2, MC5, MC23, and DL11). Screening of patient IgGs against overlapping peptides spanning the gD2 ectodomain revealed that about half of the samples contained antibodies against linear epitopes within the N and C termini of gD2. We found that the virus-neutralizing abilities of the 10 most potent samples correlated with overall gD-binding activity and to an even greater extent with the combined content of IgGs against the epitopes of MAbs MC2, MC5, MC23, and DL11. This suggests that optimal virus-neutralizing activity is achieved by strong and balanced responses to the four major discontinuous neutralizing epitopes of gD2. Importance: Several herpes simplex virus 2 (HSV-2) subunit vaccine studies have been conducted in human subjects using a recombinant form of HSV-2 glycoprotein D (gD2). Although several distinct, well-characterized virus-neutralizing epitopes on gD2 are targeted by murine monoclonal antibodies, it is not known whether the same epitopes are targeted by the humoral response to gD2 in humans. We have developed a novel, biosensor-based competition assay to directly address this important question. Using this approach, we identified epitopes that elicit strong humoral responses in humans, as well as other epitopes that elicit much weaker responses. These data provide new insight into the human response to known neutralizing gD2 epitopes and reveal characteristics of this response that may guide future vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Epítopos/inmunología , Herpesvirus Humano 2/inmunología , Vacunas contra Herpesvirus/inmunología , Inmunoglobulina G/sangre , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Vacunas contra Herpesvirus/administración & dosificación , Humanos , Inmunoglobulina G/inmunología , Pruebas de Neutralización , Unión Proteica
13.
J Virol ; 87(23): 12656-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049165

RESUMEN

Viral entry by herpes simplex virus (HSV) is executed and tightly regulated by four glycoproteins. While several viral glycoproteins can mediate viral adhesion to host cells, only binding of gD to cellular receptor can activate core fusion proteins gB and gH/gL to execute membrane fusion and viral entry. Atomic structures of gD bound to receptor indicate that the C terminus of the gD ectodomain must be displaced before receptor can bind to gD, but it is unclear which conformational changes in gD activate membrane fusion. We rationally designed mutations in gD to displace the C terminus and observe if fusion could be activated without receptor binding. Using a cell-based fusion assay, we found that gD V231W induced cell-cell fusion in the absence of receptor. Using recombinant gD V231W protein, we observed binding to conformationally sensitive antibodies or HSV receptor and concluded that there were changes proximal to the receptor binding interface, while the tertiary structure of gD V231W was similar to that of wild-type gD. We used a biosensor to analyze the kinetics of receptor binding and the extent to which the C terminus blocks binding to receptor. We found that the C terminus of gD V231W was enriched in the open or displaced conformation, indicating a mechanism for its function. We conclude that gD V231W triggers fusion through displacement of its C terminus and that this motion is indicative of how gD links receptor binding to exposure of interfaces on gD that activate fusion via gH/gL and gB.


Asunto(s)
Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Fusión Celular , Línea Celular , Herpes Simple/metabolismo , Herpesvirus Humano 1/química , Herpesvirus Humano 1/genética , Humanos , Fusión de Membrana , Mutación Missense , Unión Proteica , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética
14.
J Huazhong Univ Sci Technolog Med Sci ; 34(1): 87-90, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496684

RESUMEN

A growing number of researches have shown that ouabain can regulate mammalian sperm function and male reproduction by modulating the sperm motility, capacitation and acrosome reaction in vitro. This study further examined the relationship between ouabain and asthenozoospermia. In this study, the rat was intraperitoneally injected with ouabain at different concentrations (low-dose ouabain group: 12.5 µg/kg body weight per day, and high-dose ouabain group: 25 µg/kg body weight per day) for 30 days to establish the asthenozoospermia model. The sperms from 60 males with normal fertility were incubated with ouabain of gradient concentrations (10(-7)-10(-2) mol/L) for 4 h. The sperm motility was evaluated under a microscope. Moreover, the endogenous ouabain (EO) level was determined in seminal plasma of mild or severe asthenozoospermia patients and males with normal fertility by competitive inhibition ELISA. The results showed that the sperm motility was significantly diminished in the rats treated with different concentrations of ouabain. The number of motile sperms (grades a and b) was decreased greatly in a time- and dose-dependent manner in 10(-5)-10(-2) mol/L ouabain groups (P<0.01), while no obvious change in sperm motility was observed in 10(-7)-10(-6)mol/L groups even for 4-h incubation (P>0.05). Furthermore, the EO level was significantly increased in asthenozoospermia patients as compared with that in males with normal fertility (25.27±1.71 µg/L in mild asthenozoospermia patients, 26.52±1.82 µg/L in severe asthenozoospermia patients, 19.31±1.45 µg/L in normal fertility men) (P<0.01). In conclusion, rat asthenozoospermia was successfully established by intraperitoneal injection of ouabain, and 10(-5) mol/L ouabain was sufficient enough to inhibit sperm motility in vitro. Moreover, EO, a normal constituent of seminal plasma, was highly expressed in asthenozoospermia males as compared with normal fertility ones.


Asunto(s)
Astenozoospermia/fisiopatología , Modelos Animales de Enfermedad , Ouabaína/toxicidad , Motilidad Espermática/efectos de los fármacos , Animales , Astenozoospermia/inducido químicamente , Astenozoospermia/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Inyecciones Intraperitoneales , Masculino , Ouabaína/metabolismo , Ouabaína/farmacología , Ratas , Ratas Sprague-Dawley , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Factores de Tiempo
15.
Heliyon ; 10(2): e24155, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293423

RESUMEN

Objective: To analyze the efficacy of noninvasive prenatal genetic testing (NIPT) in detecting fetal sex chromosome abnormalities and copy number variation (CNV), compare the efficacy between NIPT and serological screening alone, and further analyze the fetal sex chromosome abnormalities and CNV differentiation in pregnant women of different ages, so as to provide a reference for the prevention and control of fetal birth defects. Methods: Clinical data from 22,692 pregnant women admitted to our hospital from January 2013 to December 2022 were retrospectively analyzed. All participants underwent serological screening and NIPT screening to compare fetal chromosomal abnormalities between the two screening modalities. 145 women whose fetus were diagnosed as sex chromosome abnormalities and 36 women whose fetus were diagnosed as CNV abnormalities based on NIPT screening were selected for prenatal diagnosis by amniocentesis or karyotyping. Taking prenatal diagnosis as the standard, the four-grid table method was used to detect the positive predictive value of NIPT screening for fetal sex chromosomal abnormalities and CNV. According to the age, pregnant women were divided into 18-30 years old (n = 9844), 31-35 years old (n = 7612), >35 years old (n = 5236), and then the detection rates of sexual fetal chromosomal abnormalities, CNV and total chromosomal abnormalities were compared in pregnant women. Results: Among the 22,692 pregnant women in this study, the high-risk proportion of serologic screening with 4.38% was higher than that of NIPT screening with 1.93% (P < 0.05). Among the 145 women with fetal sex chromosome abnormalities screened by NIPT, 122 cases of fetal sex chromosome abnormalities were diagnosed prenatally, including 45, X/47, XXX/47, XYY/47, XXY. The positive predictive values of NIPT screening were 25.00%, 58.82%, 85.71%, and 85.71%, respectively, with an overall predictive value of 44.26%. The positive predictive value of fetal sex chromosome abnormalities in NIPT screening was higher than that of serological screening (P < 0.05). Among the 36 pregnant women with fetal CNV, NIPT screening showed that CNVs≤10 Mb and CNVs>10 Mb were 33.33% and 66.67%, respectively. There were 12 cases of prenatal diagnosis of fetal CNV, among which the NIPT-screened positive predictive values of fetal copy number deletion, duplicate, deletion and duplicate were 50.00%, 57.14% and 100.00%, respectively, with an overall predictive value of 58.33%. The positive predictive value of CNV in NIPT screening was higher than that of serological screening without statistically significant difference (P > 0.05). The results of NIPT screening showed that the detection rate of fetal sex chromosome abnormalities and total abnormalities of pregnant women over 35 years of age was significantly higher than that of pregnant women aged 18-30 and 31-35 years (P < 0.05). Conclusion: NIPT screening could greatly improve the detection efficacy of fetal sex chromosome abnormalities, CNV and other chromosome abnormalities, and decline the false positive rate. However, the positive predictive value of NIPT screening was relatively low, and further prenatal testing and genetic counseling are still required. In addition, NIPT screening for fetal sex chromosome abnormalities, and the detection rate of total abnormalities in pregnant women older than 35 years old were increased significantly, and pregnancy at an advanced age may be one of the risk factors for fetal chromosomal abnormalities.

16.
PLoS Pathog ; 7(9): e1002277, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21980294

RESUMEN

Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting ß-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region.


Asunto(s)
Moléculas de Adhesión Celular/química , Herpesvirus Humano 1/química , Receptores Virales/química , Proteínas del Envoltorio Viral/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Nectinas , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Virales/genética , Receptores Virales/metabolismo , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
17.
J Phys Chem Lett ; 14(49): 11036-11042, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38047885

RESUMEN

One of the most urgent and attractive topics in electrocatalytic water splitting is the exploration of high-performance and low-cost catalysts. Herein, we have proposed three fresh two-dimensional nanostructures (BSi5, BSi4, and BSi3) with inherent metallicity contributed by delocalized π electrons based on first-principles calculations. Their planar atoms arrangement, akin to graphene, is in favor of the availability of active atoms and H adsorption/deadsorption. Among them, the BSi5 monolayer shows the best HER activity, even superior to a commercial Pt catalyst. Moreover, its extraordinary HER activity can be maintained under high H coverage and large biaxial strain, mainly originating from the fact that B 2pz orbital electrons are responsible for the B-H interaction. Further analysis reveals that there appears to be a linear correlation between the magnitude of B 2pz DOS at the Fermi level and Gibbs free energy in both three proposed nanostructures and five hypothetical B-Si nanostructures. Our work represents a significant step forward toward the design of metal-free HER catalysts.

18.
J Biol Chem ; 286(25): 22047-54, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21536665

RESUMEN

Peroxisome proliferator-activated receptor α, coactivator 1α (PGC-1α) is the master regulator of mitochondrial biogenesis. PGC-1α expression is under the control of the transcription factor, cAMP-responsive element-binding protein (CREB). In searching for candidate transcription factors that mediate mitochondrial stress-initiated mitochondria-to-nucleus signaling in the regulation of mitochondrial biogenesis, we assessed the effect of silencing CREB-regulated transcription co-activators (CRTC). CRTC isoforms are co-activators of CREB-regulated transcription by a CREB phosphorylation-independent pathway. Using cultured HepG2 cells and primary mouse hepatocytes, we determined that mitochondrial stress imposed by the complex I inhibitor rotenone elicited mitochondrial biogenesis, which was dependent on an induction of PGC-1α, which was inhibited by silencing PGC-1α. PGC-1α induction in response to rotenone was inhibited by silencing the expression of CRTC3, which blocked downstream mitochondria biogenesis. In contrast, silencing CRTC2 did not affect the induction of this pathway in response to rotenone. Thus, CRTC3 plays a selective role in mitochondrial biogenesis in response to rotenone.


Asunto(s)
Hepatocitos/citología , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Animales , Silenciador del Gen , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas/genética , Rotenona/toxicidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
19.
J Virol ; 85(13): 6175-84, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21507973

RESUMEN

Herpes simplex virus (HSV) entry requires the core fusion machinery of gH/gL and gB as well as gD and a gD receptor. When gD binds receptor, it undergoes conformational changes that presumably activate gH/gL, which then activates gB to carry out fusion. gB is a class III viral fusion protein, while gH/gL does not resemble any known viral fusion protein. One hallmark of fusion proteins is their ability to bind lipid membranes. We previously used a liposome coflotation assay to show that truncated soluble gB, but not gH/gL or gD, can associate with liposomes at neutral pH. Here, we show that gH/gL cofloats with liposomes but only when it is incubated with gB at pH 5. When gB mutants with single amino acid changes in the fusion loops (known to inhibit the binding of soluble gB to liposomes) were mixed with gH/gL and liposomes at pH 5, gH/gL failed to cofloat with liposomes. These data suggest that gH/gL does not directly associate with liposomes but instead binds to gB, which then binds to liposomes via its fusion loops. Using monoclonal antibodies, we found that many gH and gL epitopes were altered by low pH, whereas the effect on gB epitopes was more limited. Our liposome data support the concept that low pH triggers conformational changes to both proteins that allow gH/gL to physically interact with gB.


Asunto(s)
Simplexvirus/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Baculoviridae/genética , Células Cultivadas , Cristalización , Vectores Genéticos , Concentración de Iones de Hidrógeno , Liposomas/metabolismo , Modelos Moleculares , Spodoptera , Proteínas del Envoltorio Viral/metabolismo
20.
Nanoscale ; 14(8): 3069-3077, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35137760

RESUMEN

In the hydrogen evolution reaction (HER), it is essential to find a high-efficiency and nonprecious electrocatalyst comparable to Pt, which needs to have rich inherently active sites and good conductivity. By combining a global minimum structure search and first-principles calculations, a hitherto unknown 2D MoCN monolayer was found, which can be considered as a structure in which Mo atoms interact with the stable CN units through triple bonds. The resultant MoCN monolayer possesses superior thermodynamic, dynamic, thermal, and mechanical stabilities, as well as inherent metallicity. In particular, it can exhibit outstanding HER catalytic activity due to the presence of many active sites with near-zero ΔGH* values, whose density totals 1.80 × 1015 sites per cm2, even more than Pt. In addition, we also propose a series of other 2D monolayers containing stable CN units (i.e., MoC2N, MoCN2 and MoC2N2), all of which can uniformly show high stability and good HER catalytic activity. Applying strain can further effectively improve the activities of C-rich (MoC2N) and N-rich (MoCN2) monolayers, inducing considerably high HER catalytic performance. For the MoCN, MoC2N and MoCN2 monolayers, the most active sites are located at the Mo-C-N chain involved. All these fascinating findings can not only provide new excellent candidates but also new insights into the design of highly efficient and nonprecious HER electrocatalysts as an alternative to Pt in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA