Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vasc Interv Radiol ; 35(10): 1474-1480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38914160

RESUMEN

PURPOSE: To evaluate the safety and effectiveness of magnetic resonance (MR) imaging-guided cryoablation of prostate cancer metastatic lymph nodes (LNs). MATERIALS AND METHODS: Fifty-two patients with prostate cancer who underwent MR imaging-guided LN ablation from September 2013 to June 2022 were retrospectively reviewed. Of these, 6 patients were excluded because adequate ablation margins (3-5 mm) could not be achieved secondary to adjacent structures. The remaining 46 patients (mean age, 70 years [SD ± 7]) underwent 55 MR imaging-guided cryoablation procedures of metastatic LNs (25 in the pelvic sidewall, 20 within the pelvic region, and 10 in the abdomen) with procedural intent of complete ablation. Locoregional tumor control (ie, technical success in the target LN) was evaluated on initial follow-up positron emission tomography (PET) scans at a mean of 4 months (SD ± 2). Preablation and postablation prostate-specific antigen (PSA) levels were recorded. Imaging follow-up continued until a median of 27.5 months (range: 3-108 months). RESULTS: Ninety-five percent (52/55) of treated LNs demonstrated no considerable activity on PET scans at initial follow-up at 4 months (SD ± 2). PSA decreased to an undetectable level of <0.1 ng/mL after cryoablation in 14 of 46 (30.4%) patients with corresponding lack of activity in 13 of 46 (28.2%) patients on continued PET imaging follow-up. Only 6 of 55 (10.9%) patients had transient adverse events, which all resolved with no long-term sequelae. CONCLUSIONS: MR imaging-guided percutaneous cryoablation of metastatic LNs is a safe and technically effective technique for treating metastatic prostate cancer in LNs.


Asunto(s)
Criocirugía , Metástasis Linfática , Imagen por Resonancia Magnética Intervencional , Neoplasias de la Próstata , Humanos , Masculino , Criocirugía/efectos adversos , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Resultado del Tratamiento , Factores de Tiempo , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Antígeno Prostático Específico/sangre , Anciano de 80 o más Años , Valor Predictivo de las Pruebas , Calicreínas/sangre
2.
J Vasc Interv Radiol ; 35(11): 1706-1713, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39047934

RESUMEN

PURPOSE: To evaluate the feasibility of intraoperative neurophysiological monitoring (IONM) during magnetic resonance (MR) imaging-guided ablations and identify strategies to reduce IONM electrode radiofrequency (RF) heating during MR imaging. MATERIALS AND METHODS: Ex vivo experiments with a porcine tissue phantom simulating a typical high RF heating risk IONM setup during an MR imaging-guided ablation procedure on the shoulder were performed using a 1.5-T scanner. Mutual interference between MR imaging and IONM was evaluated. To assess RF heating risks, 4 pairs of IONM electrodes were inserted into the phantom at regions corresponding to the shoulders, midarm, and wrist. MR imaging of the "shoulder" was performed at 3 different specific absorption rates (SARs) with electrode wires positioned in various geometric configurations. Different combinations of electrode connections to the IONM system were investigated. Temperatures of each electrode were recorded using fiber-optic sensors. RESULTS: Simultaneous IONM readout and MR imaging resulted in distortion of the IONM signal, but interleaving MR imaging and IONM without moving electrodes was feasible. During MR imaging, temperature elevations greater than 60°C at the electrode insertion sites were observed. Temperature reductions were achieved by routing electrode wires along the scanner central axis, reducing the wire length within the scanner bore, or lowering the SAR of the imaging sequence. Altering the electrode connection with the IONM system did not result in consistent changes in RF heating. CONCLUSIONS: With electrodes in the scanner bore, interleaving IONM and MR imaging is desired to avoid signal interference, and several strategies identified herein can reduce risk of electrode RF heating during MR imaging-guided ablation.


Asunto(s)
Estudios de Factibilidad , Monitorización Neurofisiológica Intraoperatoria , Imagen por Resonancia Magnética Intervencional , Fantasmas de Imagen , Flujo de Trabajo , Animales , Imagen por Resonancia Magnética Intervencional/instrumentación , Imagen por Resonancia Magnética Intervencional/efectos adversos , Monitorización Neurofisiológica Intraoperatoria/instrumentación , Monitorización Neurofisiológica Intraoperatoria/métodos , Porcinos , Imagen por Resonancia Magnética/efectos adversos , Sus scrofa
3.
Radiographics ; 44(2): e230075, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38271257

RESUMEN

Lymphatic flow and anatomy can be challenging to study, owing to variable lymphatic anatomy in patients with diverse primary or secondary lymphatic pathologic conditions and the fact that lymphatic imaging is rarely performed in healthy individuals. The primary components of the lymphatic system outside the head and neck are the peripheral, retroperitoneal, mesenteric, hepatic, and pulmonary lymphatic systems and the thoracic duct. Multiple techniques have been developed for imaging components of the lymphatic system over the past century, with trade-offs in spatial, temporal, and contrast resolution; invasiveness; exposure to ionizing radiation; and the ability to obtain information on dynamic lymphatic flow. More recently, dynamic contrast-enhanced (DCE) MR lymphangiography (MRL) has emerged as a valuable tool for imaging both lymphatic flow and anatomy in a variety of congenital and acquired primary or secondary lymphatic disorders. The authors provide a brief overview of lymphatic physiology, anatomy, and imaging techniques. Next, an overview of DCE MRL and the development of an MRL practice and workflow in a hybrid interventional MRI suite incorporating cart-based in-room US is provided, with an emphasis on multidisciplinary collaboration. The spectrum of congenital and acquired lymphatic disorders encountered early in an MRL practice is provided, with emphasis on the diversity of imaging findings and how DCE MRL can aid in diagnosis and treatment of these patients. Methods such as DCE MRL for assessing the hepatic and mesenteric lymphatic systems and emerging technologies that may further expand DCE MRL use such as three-dimensional printing are introduced. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Asunto(s)
Enfermedades Linfáticas , Linfografía , Humanos , Linfografía/métodos , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Enfermedades Linfáticas/diagnóstico por imagen , Enfermedades Linfáticas/patología , Sistema Linfático/patología
4.
J Vasc Interv Radiol ; 34(1): 46-53.e4, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202337

RESUMEN

PURPOSE: To investigate the effect of simultaneous use of dual applicators on the image quality of real-time magnetic resonance (MR) thermometry and to characterize the dual-applicator treatment zone pattern during MR imaging-guided microwave ablation (MWA). MATERIALS AND METHODS: MWA experiments were performed on a 1.5-T MR scanner with 2 commercial microwave systems (902-928 MHz). Phantom experiments were first performed to evaluate the effect of dual-applicator MWA on the image quality of MR. Then, porcine tissue model experiments were conducted with real-time MR thermometry using either a single applicator or dual applicators inserted 2.6, 3.6, and 4.6 cm apart. Fiberoptic thermal probes were used to measure the temperature changes at the tissue surface. RESULTS: Simultaneous use of dual applicators resulted in a decrease in the relative signal-to-noise ratio (SNR) in the MR thermometry images to 55% ± 2.9% when compared with that of a single applicator (86.2% ± 2.0%). Despite the lower SNR, the temperature and ablation zone maps were of adequate quality to allow visualization of the ablation zone(s). The extents of increase in the temperature at the tissue surface using dual applicators (19.7 °C ± 2.6 °C) and a single applicator (18.2 °C ± 3.3 °C) were not significantly different (P = .40). Treatment zones were significantly larger (P < .05) in dual-applicator ablations (29.4 ± 0.4, 39.9 ± 0.6, and 42.6 ± 0.9 cm2 with 2.6-, 3.6-, and 4.6-cm spacing, respectively) at the end of the ablation procedure than in the single-applicator MWA (18.6 ± 0.9 cm2). CONCLUSIONS: MR imaging-guided dual-applicator MWA produced larger ablation zones while allowing adequate real-time MR thermometry image quality for monitoring the evolution of the treatment zone.


Asunto(s)
Microondas , Termometría , Porcinos , Animales , Microondas/uso terapéutico , Hígado/patología , Termometría/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética
5.
Pain Med ; 24(11): 1219-1223, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37478345

RESUMEN

OBJECTIVE: To evaluate the safety and tolerability of MRI-guided focused ultrasound (MRgFUS) for the treatment of facet joint-mediated pain in human subjects for whom conventional treatment had failed. Secondarily, to evaluate effectiveness of the procedure. METHODS: Consecutive patients who underwent MRgFUS at our institution were retrospectively identified. Chart review was performed to obtain relevant clinical and technical data. All patients had chronic low back pain and positive comparative medial branch blocks. RESULTS: Twenty-six MRgFUS treatments in 20 patients were included. Mean sonication energy was 1436.6 Joules. The procedure was technically successful in all patients. Of the treated patients, 29.6% experienced short-term worsening of low back pain immediately after the procedure, all by 1-4 points on a 0-10 scale. One patient (3.8%) reported temporary worsening of preexisting radicular symptoms after the procedure. Of 21 treatments with clinical follow-up of at least 3 months available, 12 (57.1%) had >3 months' pain relief, 2 (10%) had <3 months' benefit, 6 (30%) reported no benefit, and 1 (5%) patient was lost to follow-up. In patients who reported at least some benefit with prior conventional radiofrequency ablation, 8/10 (80%) benefited from the MRgFUS procedure. CONCLUSION: The present study demonstrates that MRgFUS ablation of the lumbar facet joints is a safe and tolerable procedure in human subjects and could provide another option for patients for whom radiofrequency ablation had failed. More than half of all patients received significant durable pain relief, which jumped to 80% for patients who had experienced at least some benefit from prior radiofrequency ablations.


Asunto(s)
Dolor de la Región Lumbar , Bloqueo Nervioso , Articulación Cigapofisaria , Humanos , Dolor de la Región Lumbar/terapia , Bloqueo Nervioso/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética , Resultado del Tratamiento
6.
J Vasc Interv Radiol ; 32(5): 721-728.e2, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33663924

RESUMEN

PURPOSE: To investigate cryoneedle heating risks during magnetic resonance (MR)-guided cryoablation and potential strategies to mitigate these risks. MATERIALS AND METHODS: Ex vivo experiments were performed on a 1.5-Tesla (T) MR scanner using an MR conditional cryoablation system on porcine tissue phantoms. Cryoneedles were placed inside the tissue phantom either with or without an angiocatheter. Typical cryoneedle geometric configurations (including gas supply line) encountered in clinical procedures with low to high expected heating risks were investigated. Up to 4 fiber optic temperature sensors were attached to the cryoneedle/angiocatheter to measure the MR-induced cryoneedle heating at different locations during MR with different estimated specific absorption rates (SARs). The impact of cryoneedle heating on cryoablation treatment was studied by comparing temperature changes during 10-min freeze-thaw cycles with and without MR. RESULTS: Rapid temperature increases of >100 °C in < 2 minutes were observed during MR with a SAR of 2.1 W/kg. The temperature changes during a typical freeze-thaw cycle were also affected by cryoneedle heating when MR was used to monitor the ice-ball evolution. The observed cryoneedle heating was affected by multiple factors; including cryoneedle geometric configurations, sequence SAR, whether an angiocatheter was used, and whether the cryoneedle was connected to the rest of the cryoablation system. CONCLUSIONS: The ex vivo experiments demonstrated that MR could induce significant cryoneedle heating risks. Furthermore, MR-induced cryoneedle heating can affect temperatures in the ice-ball evolution during the freeze-thaw cycle. Several practical strategies to reduce the cryoneedle heating have been proposed.


Asunto(s)
Criocirugía/instrumentación , Imagen por Resonancia Magnética Intervencional , Agujas , Temperatura , Animales , Catéteres , Criocirugía/efectos adversos , Imagen por Resonancia Magnética Intervencional/efectos adversos , Carne de Cerdo , Medición de Riesgo , Factores de Riesgo , Sus scrofa , Factores de Tiempo
7.
Radiographics ; 41(6): 1785-1801, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597216

RESUMEN

Clinical use of MRI for guidance during interventional procedures emerged shortly after the introduction of clinical diagnostic MRI in the late 1980s. However, early applications of interventional MRI (iMRI) were limited owing to the lack of dedicated iMRI magnets, pulse sequences, and equipment. During the 3 decades that followed, technologic advancements in iMRI magnets that balance bore access and field strength, combined with the development of rapid MRI pulse sequences, surface coils, and commercially available MR-conditional devices, led to the rapid expansion of clinical iMRI applications, particularly in the field of body iMRI. iMRI offers several advantages, including superior soft-tissue resolution, ease of multiplanar imaging, lack of ionizing radiation, and capability to re-image the same section. Disadvantages include longer examination times, lack of MR-conditional equipment, less operator familiarity, and increased cost. Nonetheless, MRI guidance is particularly advantageous when the disease is best visualized with MRI and/or when superior soft-tissue contrast is needed for treatment monitoring. Safety in the iMRI environment is paramount and requires close collaboration among interventional radiologists, MR physicists, and all other iMRI team members. The implementation of risk-limiting measures for personnel and equipment in MR zones III and IV is key. Various commercially available MR-conditional needles, wires, and biopsy and ablation devices are now available throughout the world, depending on the local regulatory status. As such, there has been tremendous growth in the clinical applications of body iMRI, including localization of difficult lesions, biopsy, sclerotherapy, and cryoablation and thermal ablation of malignant and nonmalignant soft-tissue neoplasms. Online supplemental material is available for this article. ©RSNA, 2021.


Asunto(s)
Imagen por Resonancia Magnética Intervencional , Biopsia , Predicción , Humanos , Imagen por Resonancia Magnética , Radiólogos
8.
MAGMA ; 34(5): 697-706, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33945050

RESUMEN

PURPOSE: MR fingerprinting (MRF) is a MR technique that allows assessment of tissue relaxation times. The purpose of this study is to evaluate the clinical application of this technique in patients with meningioma. MATERIALS AND METHODS: A whole-brain 3D isotropic 1mm3 acquisition under a 3.0T field strength was used to obtain MRF T1 and T2-based relaxometry values in 4:38 s. The accuracy of values was quantified by scanning a quantitative MR relaxometry phantom. In vivo evaluation was performed by applying the sequence to 20 subjects with 25 meningiomas. Regions of interest included the meningioma, caudate head, centrum semiovale, contralateral white matter and thalamus. For both phantom and subjects, mean values of both T1 and T2 estimates were obtained. Statistical significance of differences in mean values between the meningioma and other brain structures was tested using a Friedman's ANOVA test. RESULTS: MR fingerprinting phantom data demonstrated a linear relationship between measured and reference relaxometry estimates for both T1 (r2 = 0.99) and T2 (r2 = 0.97). MRF T1 relaxation times were longer in meningioma (mean ± SD 1429 ± 202 ms) compared to thalamus (mean ± SD 1054 ± 58 ms; p = 0.004), centrum semiovale (mean ± SD 825 ± 42 ms; p < 0.001) and contralateral white matter (mean ± SD 799 ± 40 ms; p < 0.001). MRF T2 relaxation times were longer for meningioma (mean ± SD 69 ± 27 ms) as compared to thalamus (mean ± SD 27 ± 3 ms; p < 0.001), caudate head (mean ± SD 39 ± 5 ms; p < 0.001) and contralateral white matter (mean ± SD 35 ± 4 ms; p < 0.001) CONCLUSIONS: Phantom measurements indicate that the proposed 3D-MRF sequence relaxometry estimations are valid and reproducible. For in vivo, entire brain coverage was obtained in clinically feasible time and allows quantitative assessment of meningioma in clinical practice.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Encéfalo/diagnóstico por imagen , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética , Neoplasias Meníngeas/diagnóstico por imagen , Meningioma/diagnóstico por imagen , Fantasmas de Imagen
9.
BMC Med Imaging ; 21(1): 88, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022832

RESUMEN

BACKGROUND: MR fingerprinting (MRF) is a novel imaging method proposed for the diagnosis of Multiple Sclerosis (MS). This study aims to determine if MR Fingerprinting (MRF) relaxometry can differentiate frontal normal appearing white matter (F-NAWM) and splenium in patients diagnosed with MS as compared to controls and to characterize the relaxometry of demyelinating plaques relative to the time of diagnosis. METHODS: Three-dimensional (3D) MRF data were acquired on a 3.0T MRI system resulting in isotropic voxels (1 × 1 × 1 mm3) and a total acquisition time of 4 min 38 s. Data were collected on 18 subjects paired with 18 controls. Regions of interest were drawn over MRF-derived T1 relaxometry maps encompassing selected MS lesions, F-NAWM and splenium. T1 and T2 relaxometry features from those segmented areas were used to classify MS lesions from F-NAWM and splenium with T-distributed stochastic neighbor embedding algorithms. Partial least squares discriminant analysis was performed to discriminate NAWM and Splenium in MS compared with controls. RESULTS: Mean out-of-fold machine learning prediction accuracy for discriminant results between MS patients and controls for F-NAWM was 65 % (p = 0.21) and approached 90 % (p < 0.01) for the splenium. There was significant positive correlation between time since diagnosis and MS lesions mean T2 (p = 0.015), minimum T1 (p = 0.03) and negative correlation with splenium uniformity (p = 0.04). Perfect discrimination (AUC = 1) was achieved between selected features from MS lesions and F-NAWM. CONCLUSIONS: 3D-MRF has the ability to differentiate between MS and controls based on relaxometry properties from the F-NAWM and splenium. Whole brain coverage allows the assessment of quantitative properties within lesions that provide chronological assessment of the time from MS diagnosis.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Área Bajo la Curva , Estudios de Casos y Controles , Cuerpo Calloso/diagnóstico por imagen , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proyectos Piloto , Sustancia Blanca/diagnóstico por imagen
10.
J Magn Reson Imaging ; 49(7): e256-e264, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30575193

RESUMEN

BACKGROUND: There is no accurate method distinguishing different types of pulmonary nodules. PURPOSE: To investigate whether multiparametric 3T MRI biomarkers can distinguish malignant from benign pulmonary nodules, differentiate different types of neoplasms, and compare MRI-derived measurements with values from commonly used noninvasive imaging modalities. STUDY TYPE: Prospective. SUBJECTS: Sixty-eight adults with pulmonary nodules undergoing resection. SEQUENCES: Respiratory triggered diffusion-weighted imaging (DWI), periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) fat saturated T2 -weighted imaging, T1 -weighted 3D volumetric interpolated breath-hold examination (VIBE) using CAIPIRINHA (controlled aliasing in parallel imaging results in a higher acceleration). ASSESSMENT/STATISTICS: Apparent diffusion coefficient (ADC), T1 , T2 , T1 and T2 normalized to muscle (T1 /M and T2 /M), and dynamic contrast enhancement (DCE) values were compared with histology to determine whether they could distinguish malignant from benign nodules and discern primary from secondary malignancies using logistic regression. Predictability of primary neoplasm types was assessed using two-sample t-tests. MRI values were compared with positron emission tomography / computed tomography (PET/CT) to examine if they correlated with standardized uptake value (SUV) or CT Hounsfield unit (HU). Intra- and interreader agreements were assessed using intraclass correlations. RESULTS: Forty-nine of 74 nodules were malignant. There was a significant association between ADC and malignancy (odds ratio 4.47, P < 0.05). ADC ≥1.3 µm2 /ms predicted malignancy. ADC, T1 , and T2 together predicted malignancy (P = 0.003). No MRI parameter distinguished primary from metastatic neoplasms. T2 predicted PET positivity (P = 0.016). T2 and T1 /M correlated with SUV (P < 0.05). Of 18 PET-negative malignant nodules, 12 (67%) had an ADC ≥1.3 µm2 /ms. With the exception of T2 , all noncontrast MRI parameters distinguished adenocarcinomas from carcinoid tumors (P < 0.05). T1 , T2 , T1 /M, and T2 /M correlated with HU and therefore can predict nodule density. Combined with ADC, washout enhancement, arrival time (AT), peak enhancement intensity (PEI), Ktrans , Kep , Ve collectively were predictive of malignancy (P = 0.012). Combined washin, washout, time to peak (TTP), AT, and PEI values predicted malignancy (P = 0.043). There was good observer agreement for most noncontrast MRI biomarkers. DATA CONCLUSION: MRI can contribute to pulmonary nodule analysis. Multiparametric MRI might be better than individual MRI biomarkers in pulmonary nodule risk stratification. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico por Computador , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Nódulos Pulmonares Múltiples/cirugía , Tomografía Computarizada por Tomografía de Emisión de Positrones , Riesgo , Nódulo Pulmonar Solitario/cirugía
11.
J Magn Reson Imaging ; 43(2): 512-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26223818

RESUMEN

BACKGROUND: To determine the accuracy of pulmonary MR imaging with ultrashort echo time (UTE) for lung and mediastinum assessments using computed tomography (CT) as the reference standard, for various pulmonary parenchyma diseases. METHODS: Eight-five consecutive patients (46 males: mean age, 69 years and 39 females: mean age, 69 years) with various pulmonary parenchyma diseases were examined with chest standard- and low-dose CTs and pulmonary MR imaging with UTE. This was followed by visual assessment using a 5-point system of the presence of nodules or masses, ground-glass opacity, micronodules, nodules, patchy shadow or consolidation, emphysema or bullae, bronchiectasis, reticular opacity, and honeycomb and traction bronchiectasis. Presence of aneurysms, pleural or pericardial effusions, pleural thickening or tumor, and lymph adenopathy was also evaluated using a 5-point system. To compare the capability of the methods for lung parenchyma and mediastinum evaluation, intermethod agreement was evaluated by means of kappa statistics and χ2 test. Receiver operating characteristic analyses were used to compare diagnostic performance of all methods. RESULTS: Intermethod agreements between pulmonary MR imaging and standard-dose and low-dose CT were significant and either substantial or almost perfect (0.67 ≤ κ ≤ 0.98; P < 0.0001). Areas under the curve for emphysema or bullae, bronchiectasis or traction bronchiectasis and reticular opacity on standard-dose CT were significantly larger than those on low-dose CT (emphysema or bullae: P = 0.0002; reticular opacity: P < 0.0001) and pulmonary MR imaging (emphysema or bullae: P < 0.0001; bronchiectasis: P = 0.008; reticular opacity: P < 0.0001). CONCLUSION: Pulmonary MR imaging with UTE is useful for lung and mediastinum assessment and evaluation of radiological findings for patients with various pulmonary parenchyma diseases.


Asunto(s)
Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/patología , Imagen por Resonancia Magnética/métodos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados
13.
Ann Biomed Eng ; 52(8): 2065-2075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38634953

RESUMEN

MR-guided microwave ablation (MWA) has proven effective in treating hepatocellular carcinoma (HCC) with small-sized tumors, but the state-of-the-art technique suffers from sub-optimal workflow due to the limited accuracy provided by the manual needle insertions. This paper presents a compact body-mounted MR-conditional robot that can operate in closed-bore MR scanners for accurate needle guidance. The robotic platform consists of two stacked Cartesian XY stages, each with two degrees of freedom, that facilitate needle insertion pose control. The robot is actuated using 3D-printed pneumatic turbines with MR-conditional bevel gear transmission systems. Pneumatic valves and control mechatronics are located inside the MRI control room and are connected to the robot with pneumatic transmission lines and optical fibers. Free-space experiments indicated robot-assisted needle insertion error of 2.6 ± 1.3 mm at an insertion depth of 80 mm. The MR-guided phantom studies were conducted to verify the MR-conditionality and targeting performance of the robot. Future work will focus on the system optimization and validations in animal trials.


Asunto(s)
Imagen por Resonancia Magnética , Procedimientos Quirúrgicos Robotizados , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Humanos , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/diagnóstico por imagen , Fantasmas de Imagen , Hígado/cirugía , Hígado/diagnóstico por imagen , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Robótica/instrumentación , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/diagnóstico por imagen , Diseño de Equipo
14.
Inflamm Bowel Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738296

RESUMEN

BACKGROUND: Despite advances in medical therapy, many children and adults with ileal Crohn's disease (CD) progress to fibrostenosis requiring surgery. We aimed to identify MRI and circulating biomarkers associated with the need for surgical management. METHODS: This prospective, multicenter study included pediatric and adult CD cases undergoing ileal resection and CD controls receiving medical therapy. Noncontrast research MRI examinations measured bowel wall 3-dimensional magnetization transfer ratio normalized to skeletal muscle (normalized 3D MTR), modified Look-Locker inversion recovery (MOLLI) T1 relaxation, intravoxel incoherent motion (IVIM) diffusion-weighted imaging metrics, and the simplified magnetic resonance index of activity (sMaRIA). Circulating biomarkers were measured on the same day as the research MRI and included CD64, extracellular matrix protein 1 (ECM1), and granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies (Ab). Associations between MRI and circulating biomarkers and need for ileal resection were tested using univariate and multivariable LASSO regression. RESULTS: Our study sample included 50 patients with CD undergoing ileal resection and 83 patients with CD receiving medical therapy; mean participant age was 23.9 ±â€…13.1 years. Disease duration and treatment exposures did not vary between the groups. Univariate biomarker associations with ileal resection included log GM-CSF Ab (odds ratio [OR], 2.87; P = .0009), normalized 3D MTR (OR, 1.05; P = .002), log MOLLI T1 (OR, 0.01; P = .02), log IVIM perfusion fraction (f; OR, 0.38; P = .04), and IVIM apparent diffusion coefficient (ADC; OR, 0.3; P = .001). The multivariable model for surgery based upon corrected Akaike information criterion included age (OR, 1.03; P = .29), BMI (OR, 0.91; P = .09), log GM-CSF Ab (OR, 3.37; P = .01), normalized 3D MTR (OR, 1.07; P = .007), sMaRIA (OR, 1.14; P = .61), luminal narrowing (OR, 10.19; P = .003), log C-reactive protein (normalized; OR, 2.75; P = .10), and hematocrit (OR, 0.90; P = .13). CONCLUSION: After accounting for clinical and MRI measures of severity, normalized 3D MTR and GM-CSF Ab are associated with the need for surgery in ileal CD.


Despite advances in medical therapy, many patients with ileal Crohn's disease progress to fibrostenosis requiring surgery. Our study has shown that GM-CSF autoantibodies and MRI biomarker sequences are associated with the need for ileal resection and may help guide management decisions.

15.
Magn Reson Med ; 69(2): 538-44, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22529019

RESUMEN

Quantitative (31)P magnetic resonance imaging of the whole human brain is often time-consuming even at low spatial resolution due to the low concentrations, long T(1) relaxation times, and low detection sensitivity of phosphorus metabolites. We report herein the results of combining the increased detection sensitivity of an ultra-high field 9.4 T scanner designed for human imaging with a new pulse sequence termed simultaneously imaging of multiple spectral peaks with interleaved excitations and flexible twisted projection imaging readout trajectories to rapidly sample multiple resonances in the (31)P spectrum. The phosphocreatine and γ-adenosine triphosphate images, obtained simultaneously from the entire human head, are demonstrated at 1.5 cm isotropic nominal resolution in a total acquisition time of 33 min. The phosphocreatine/γ-adenosine triphosphate ratio calculated for brain parenchyma (1-2) and the superficial temporalis muscle (3-5) are in agreement with literature values.


Asunto(s)
Adenosina Trifosfato/metabolismo , Algoritmos , Encéfalo/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fosfocreatina/metabolismo , Fósforo/farmacocinética , Encéfalo/anatomía & histología , Humanos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
16.
Food Chem ; 401: 134127, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36096005

RESUMEN

In the present study, Ulva prolifera, an edible alga, was used to prepare angiotensin-I converting enzyme (ACE) inhibitory peptide. The algae protein was isolated and later hydrolyzed by five commercial enzymes (alcalase, papain, pepsin, trypsin, neutral protease), either individually or in combination. Hydrolysate, with the highest in vitro ACE inhibitory activity, was processed using the Sephadex-G100, ultrafiltration, HPLC-Q-TOF-MS, ADMET screening and molecular docking, respectively. The ACE inhibitory peptide DIGGL with a IC50 value of 10.32 ± 0.96 µM was then identified. The peptide against ACE by a non-competitive mode and mainly attributable to the three Conventional Hydrogen Bonds. It could activate Endothelial nitric oxide synthase activity in NO generation and reduce Endothelin-1 secretion induced by Angiotensin II in Human umbilical vein endothelial cells. Meanwhile, DIGGL could promote mice splenocytes proliferation, which was also effective when co-incubated with Con A or LPS, respectively. Besides, the anti-ACE peptide could remain active during the digestion of gastrointestinal proteases (pepsin-trypsin) in vitro.


Asunto(s)
Peptidil-Dipeptidasa A , Ulva , Animales , Humanos , Ratones , Peptidil-Dipeptidasa A/metabolismo , Ulva/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/química , Hidrolisados de Proteína/química , Óxido Nítrico Sintasa de Tipo III , Tripsina/metabolismo , Pepsina A/metabolismo , Simulación del Acoplamiento Molecular , Endotelina-1 , Angiotensina II , Papaína , Células Endoteliales/metabolismo , Lipopolisacáridos , Hidrólisis , Péptidos/química , Péptido Hidrolasas/metabolismo , Subtilisinas
17.
Magn Reson Med ; 68(3): 751-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22139900

RESUMEN

Emerging applications of sodium bioscales derived from quantitative sodium magnetic resonance imaging assess temporal changes in regional sodium concentration over intervals that vary from hours (monitoring tissue viability in stroke) to weeks (monitoring brain tumor treatment during radiation therapy) or even years (monitoring progression of neurodegenerative disease). Accurate interpretation of such quantitative data requires precise registration between magnetic resonance imaging sessions to avoid session-to-session changes in partial volume effects between normal tissue (∼38 mM sodium concentration), lesions (variable sodium concentration), and cerebrospinal fluid (∼144 mM sodium concentration). The existing Automated Image Registration algorithm is shown to be suitable for rapid, accurate, and precise determination of the transform that aligns sodium magnetic resonance images. Implementation of this transform during image reconstruction from the k-space data is shown to produce smaller errors than conventional image-domain interpolation. Experimental results at 9.4 T and 3.0 T demonstrating this registration approach to sodium data illustrate preservation of quantification accuracy during alignment of sodium magnetic resonance images acquired from the same subject during different imaging sessions.


Asunto(s)
Algoritmos , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Sodio/análisis , Técnica de Sustracción , Humanos , Aumento de la Imagen/métodos , Estudios Longitudinales , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
18.
Br J Radiol ; 95(1140): 20220230, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367095

RESUMEN

OBJECTIVE: Investigate the performance of multiparametric MRI radiomic features, alone or combined with current standard-of-care methods, for pulmonary nodule classification. Assess the impact of segmentation variability on feature reproducibility and reliability. METHODS: Radiomic features were extracted from 74 pulmonary nodules of 68 patients who underwent nodule resection or biopsy after MRI exam. The MRI features were compared with histopathology and conventional quantitative imaging values (maximum standardized uptake value [SUVmax] and mean Hounsfield unit [HU]) to determine whether MRI radiomic features can differentiate types of nodules and associate with SUVmax and HU using Wilcoxon rank sum test and linear regression. Diagnostic performance of features and four machine learning (ML) models were evaluated with area under the receiver operating characteristic curve (AUC) and 95% confidence intervals (CIs). Concordance correlation coefficient (CCC) assessed the segmentation variation impact on feature reproducibility and reliability. RESULTS: Elevn diffusion-weighted features distinguished malignant from benign nodules (adjusted p < 0.05, AUC: 0.73-0.81). No features differentiated cancer types. Sixty-seven multiparametric features associated with mean CT HU and 14 correlated with SUVmax. All significant MRI features outperformed traditional imaging parameters (SUVmax, mean HU, apparent diffusion coefficient [ADC], T1, T2, dynamic contrast-enhanced imaging values) in distinguishing malignant from benign nodules with some achieving statistical significance (p < 0.05). Adding ADC and smoking history improved feature performance. Machine learning models demonstrated strong performance in nodule classification, with extreme gradient boosting (XGBoost) having the highest discrimination (AUC = 0.83, CI=[0.727, 0.932]). We found good to excellent inter- and intrareader feature reproducibility and reliability (CCC≥0.80). CONCLUSION: Eleven MRI radiomic features differentiated malignant from benign lung nodules, outperforming traditional quantitative methods. MRI radiomic ML models demonstrated good nodule classification performances with XGBoost superior to three others. There was good to excellent inter- and intrareader feature reproducibility and reliability. ADVANCES IN KNOWLEDGE: Our study identified MRI radiomic features that successfully differentiated malignant from benign lung nodules and demonstrated high performance of our MR radiomic feature-based ML models for nodule classification. These new findings could help further establish thoracic MRI as a non-invasive and radiation-free alternative to standard practice for pulmonary nodule assessment.


Asunto(s)
Imagen por Resonancia Magnética , Nódulos Pulmonares Múltiples , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Estudios Retrospectivos
19.
J Neurol Surg B Skull Base ; 83(2): 203-209, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35433184

RESUMEN

Objective Therapeutic hypothermia is a potentially powerful and controversial clinical tool for neuroprotection following acute neurologic pathology, particularly vascular injury. Indeed, therapeutic hypothermia remains a standard of care for postcardiac arrest ischemia and acute neonatal hypoxic-ischemic encephalopathy, improving both survival and outcomes. Although therapeutic hypothermia remains promising for cellular and systems-based neuronal protection in other neurologic injury states, the systemic side effects have limited clinical utility, confounded analysis of potential neurologic benefits, and precluded the completion of meaningful clinical trials. Methods To address such limitations, we developed and tested a novel, minimally invasive, neurocritical care device that employs continuous circulation of cold saline through the pharyngeal region to deliver focal cerebrovascular cooling. We conducted a preclinical safety and efficacy trial in six adult porcine animals to assess the validity and functionality of the NeuroSave device, and assess cooling potential following middle cerebral artery occlusion ( n = 2). Results NeuroSave consistently lowered brain parenchymal temperature by a median of 9°C relative to core temperature within 60 minutes of initiation, including in ischemic cerebral parenchyma. The core body temperature experienced a maximal reduction of 2°C, or 5% of body temperature, with no associated adverse effects identified. Conclusion The present study uses a large animal preclinical model to demonstrate the safety and efficacy of a novel, noninvasive device for the induction of robust and systemically safe hypothermia within the brain.

20.
Magn Reson Med ; 66(4): 1089-99, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21446034

RESUMEN

The rapid transverse relaxation of the sodium magnetic resonance signal during spatial encoding causes a loss of image resolution, an effect known as T(2)-blurring. Conventional wisdom suggests that spatial resolution is maximized by keeping the readout duration as short as possible to minimize T(2)-blurring. Flexible twisted projection imaging performed with an ultrashort echo time, relative to T(2), and a long repetition time, relative to T(1), has been shown to be effective for quantitative sodium magnetic resonance imaging. A minimized readout duration requires a very large number of projections and, consequentially, results in an impractically long total acquisition time to meet these conditions. When the total acquisition time is limited to a clinically practical duration (e.g., 10 min), the optimal parameters for maximal spatial resolution of a flexible twisted projection imaging acquisition do not correspond to the shortest possible readout. Simulation and experimental results for resolution optimized acquisition parameters of quantitative sodium flexible twisted projection imaging of parenchyma and cerebrospinal fluid are presented for the human brain at 9.4 and 3.0T. The effect of signal loss during data collection on sodium quantification bias and image signal-to-noise ratio are discussed.


Asunto(s)
Mapeo Encefálico/métodos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Sodio/metabolismo , Biomarcadores/metabolismo , Homeostasis , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Imagen de Cuerpo Entero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA