Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7791-7802, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38461434

RESUMEN

The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).

2.
J Am Chem Soc ; 145(6): 3577-3587, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36744315

RESUMEN

Aromatic polycyclic systems have been extensively utilized as structural subunits for the preparation of various functional molecules. Currently, aromatics-based polycyclic systems are predominantly generated from the extension of two-dimensional (2D) aromatic rings. In contrast, polycyclic compounds based on the extension of three-dimensional (3D) aromatics such as boron clusters are less studied. Here, we report three types of boron cluster-cored tricyclic molecular systems, which are constructed from a 2D aromatic ring, a 3D aromatic nido-carborane, and an alkyne. These new tricyclic compounds can be facilely accessed by Pd-catalyzed B-H activation and the subsequent cascade heteroannulation of carborane and pyridine with an alkyne in an isolated yield of up to 85% under mild conditions without any additives. Computational results indicate that the newly generated ring from the fusion of the 3D carborane, the 2D pyridyl ring, and an alkyne is non-aromatic. However, such fusion not only leads to a 1H chemical shift considerably downfield shifted owing to the strong diatropic ring current of the embedded carborane but also devotes to new/improved physicochemical properties including increased thermal stability, the emergence of a new absorption band, and a largely red-shifted emission band and enhanced emission efficiency. Besides, a number of bright, color-tunable solid emitters spanning over all visible light are obtained with absolute luminescence efficiency of up to 61%, in contrast to aggregation-caused emission quenching of, e.g., Rhodamine B containing a 2D-aromatics-fused structure. This work demonstrates that the new hybrid conjugated tricyclic systems might be promising structural scaffolds for the construction of functional molecules.

3.
J Am Chem Soc ; 145(13): 7638-7647, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946888

RESUMEN

The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.

4.
Chemistry ; 28(33): e202200303, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35510961

RESUMEN

We proposed a new molecular design strategy that the o-carboranyl group is attached as "an innocent unit" to the remote side of luminogens to tune photophysical properties. To verify this strategy, two o-carborane-based compounds with asymmetric molecular geometry were designed and synthesized. Photophysical properties of o-carborane-based luminogens were investigated on the basis of UV-Vis spectra, photoluminescence spectra, crystal structure analysis and theoretical calculations. The results indicate that the o-carboranyl group has a slight effect on the energy gap between the ground state (S0 ) and the first excited state (S1 ) in the solution state but a significant effect on the energy gap between S0 and S1 in the solid state. Besides, the radiative and non-radiative transition processes are modulated by the o-carboranyl unit. This leads to emission quenching in the solution state but an enhanced luminous efficiency in the aggregate state with a typical aggregation-induced emission (AIE) property.

5.
Angew Chem Int Ed Engl ; 61(37): e202205672, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35670361

RESUMEN

Functionalization of carboranes in a vertex-specific manner is a perennial challenge. Here, we report a photocatalytic B-C coupling for the selective functionalization of carboranes at the boron site which is most distal to carbon. This reaction was achieved by the photo-induced decarboxylation of carborane carboxylic acids to generate boron vertex-centered carboranyl radicals. Theoretical calculations also demonstrate that the reaction more easily occurs at the boron site bearing higher electron density owing to the lower energy barrier for a single-electron transfer to generate a carboranyl radical. By using this strategy, a number of functionalized carboranes could be accessed through alkylation, alkenylation, and heteroarylation under mild conditions. Moreover, both a highly efficient blue emitter with a solid-state luminous efficiency of 42 % and a drug candidate for boron neutron capture therapy (BNCT) containing targeting and fluorine units were obtained.


Asunto(s)
Boranos , Terapia por Captura de Neutrón de Boro , Boro , Compuestos de Boro/uso terapéutico , Electrones
6.
Angew Chem Int Ed Engl ; 61(33): e202207125, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35665583

RESUMEN

The classical aggregation-induced emission (AIE)-active luminogens (AIEgens) usually include two-dimensional aromatic systems such as tetraphenylethenes, which are synthesized in several steps by using toxic additives. Here, we proposed a new molecular design strategy for the realization of AIE properties by combining three-dimensional aromatic boron clusters of carboranes with vinyl group(s). To obtain a library of the boron cluster-based AIEgens, a Pd-catalyzed hydroboration of alkynes with carboranes is reported. This reaction protocol proceeds in one step under mild conditions with rapid reaction rate, excellent yields and regioselectivity. Photophysical property studies demonstrate that the facile molecular motions in solution can be inhibited in the solid state for these molecules, which leads to interesting AIE properties. This work provides not only a general design principle for AIEgens but also an efficient methodology to synthesize boron cluster-based photo-functional molecules.

7.
Chemistry ; 27(8): 2699-2706, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32969106

RESUMEN

The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.

8.
Angew Chem Int Ed Engl ; 60(14): 7838-7844, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33372727

RESUMEN

An atom-economical method for the direct B-H functionalization of nido-carboranes (7,8-nido-C2 B9 H12 - ) has been developed under electrochemical reaction conditions. In this reaction system, anodic oxidation serves as a green alternative for traditional chemical oxidants in the oxidation of nido-carboranes. No transition-metal catalyst is required and different heteroatoms bearing a lone pair are reactive in this transformation. Coupling nido-carboranes with thioethers, selenides, tellurides, N-heterocycles, phosphates, phosphines, arsenides and antimonides demonstrates high site-selectivity and efficiency. Importantly, nido-carboranes can be easily incorporated into drug motifs through this reaction protocol.

9.
Chemistry ; 25(55): 12671-12683, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31283848

RESUMEN

The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.

10.
Angew Chem Int Ed Engl ; 58(10): 3162-3166, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30698911

RESUMEN

The aggregation-induced electrochemiluminescence (AIECL) of carboranyl carbazoles in aqueous media was investigated for the first time. Quantum yields, morphologies, and particle sizes were observed to determine the electrochemiluminescence (ECL) performance of these aggregated organic dots (ODs). All compounds exhibit much higher ECL stability and intensity than the carborane-free compound, demonstrating the essential role of the carboranyl motif. Moreover, the results of cyclic voltammetry (CV) suggest that oxidation/reduction reactions take place at the carboranyl motif. The excited states of ODs were proposed to be generated by the mechanism of surface state transitions. More importantly, these compounds show a reductive-oxidative mechanism in contrast to other organic materials that show oxidative-reductive mechanisms. Our experiments and data have established the relation between AIE organic structures and ECL properties that has a strong potential for biological and diagnostic applications.

11.
Angew Chem Int Ed Engl ; 58(27): 9129-9133, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31021455

RESUMEN

Although carborane-based luminescent materials have been studied for years, no persistent phosphor has been reported so far. Herein, we describe boron-cluster-based persistent phosphors obtained by linking a σ-aromatic carboranyl cage to the π system of a carbazolyl group. The carboranes were found to promote intersystem crossing from a singlet to a triplet state. The rigid boron cluster was able to stabilize the ultralong triplet excitons through multiple nonclassical hydrogen bonds, such as B-H⋅⋅⋅π interactions, thus leading to a long lifetime of up to 0.666 s and an absolute phosphorescence quantum yield of 7.1 %, which is outstanding for an organic phosphor without heavy atoms. These phosphors can be excited by visible light and show dynamic emission behavior, including thermochromism and mechanochromism. This study demonstrates that non-metal/heavy-atom boron clusters can be used to develop multifunctional high-performance phosphors for potential applications.

12.
Angew Chem Int Ed Engl ; 58(34): 11886-11892, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31233261

RESUMEN

A general method for the oxidative substitution of nido-carborane (7,8-C2 B9 H12 - ) with N-heterocycles has been developed by using 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) as an oxidant. This metal-free B-N coupling strategy, in both inter- and intramolecular fashions, gave rise to a wide array of charge-compensated, boron-substituted nido-carboranes in high yields (up to 97 %) with excellent functional-group tolerance under mild reaction conditions. The reaction mechanism was investigated by density-functional theory (DFT) calculations. A successive single-electron transfer (SET), B-H hydrogen-atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen-containing carboranes with potential applications in medicine and materials.

13.
Angew Chem Int Ed Engl ; 56(38): 11370-11374, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28654177

RESUMEN

The development of organic single-molecule solid-state white emitters holds a great promise for advanced lighting and display applications. Highly emissive single-molecule white emitters were achieved by the design and synthesis of a series of o-carborane-based luminophores. These luminophores are able to induce multiple emissions to directly emit high-purity white light in solid state. By tuning both molecular and aggregate structures, a significantly improved white-light efficiency has been realized (absolute quantum yield 67 %), which is the highest value among the known organic single-molecule white emitters in the solid state. The fine-tuning of the packing modes from H- to J- and cross-stacking aggregates as well as intermolecular hydrogen bonds are successful in one molecular skeleton. These are crucial for highly emissive white-light emission in the solid state.

14.
Chemistry ; 22(48): 17282-17290, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27786384

RESUMEN

The structure-property relationship of carborane-modified iridium(III) complexes was investigated. Firstly, an efficient approach for the synthesis of o-carborane-containing pyridine ligands a-f in high yields was developed by utilizing stable and cheap B10 H10 (Et4 N)2 as the starting material. By using these ligands, iridium(III) complexes I-VII were efficiently prepared. In combination with DFT calculations, the photophysical and electrochemical properties of these complexes were studied. The hydrophilic nido-o-carborane-based iridium(III) complex VII showed the highest phosphorescence efficiency (abs. ϕP =0.48) among known water-soluble homoleptic cyclometalated iridium(III) complexes and long emission lifetime (τ=1.24 µs) in aqueous solution. Both of them are sensitive to O2 , and thus endocellular hypoxia imaging of complex VII was realized by time-resolved luminescence imaging (TRLI). This is the first example of applying TRLI in endocellular oxygen detection with a water-soluble nido-carborane functionalized iridium(III) complex.


Asunto(s)
Boranos/química , Hipoxia de la Célula/fisiología , Imidazoles/química , Iridio/química , Ligandos , Luminiscencia
15.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38597279

RESUMEN

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Asunto(s)
Electrónica , Humanos , Animales , Materiales Biocompatibles/química , Seda/química , Fibroínas/química , Dispositivos Electrónicos Vestibles , Óptica y Fotónica , Bombyx
16.
Plants (Basel) ; 13(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38256728

RESUMEN

Salt stress is one of the most important factors limiting rice growth and yield increase. Salt tolerance of rice at the bud burst (STB) stage determines whether germinated seeds can grow normally under salt stress, which is very important for direct seeding. However, reports on quantitative trait loci (QTLs) and candidate genes for STB in rice are very limited. In this study, a natural population of 130 indica and 81 japonica rice accessions was used to identify STB-related QTLs and candidate genes using a genome-wide association study (GWAS). Nine QTLs, including five for relative shoot length (RSL), two for relative root length (RRL), and two for relative root number (RRN), were identified. Five of these STB-related QTLs are located at the same site as the characterized salt tolerance genes, such as OsMDH1, OsSRFP1, and OsCDPK7. However, an important QTL related to RSL, qRSL1-2, has not been previously identified and was detected on chromosome 1. The candidate region for qRSL1-2 was identified by linkage disequilibrium analysis, 18 genes were found to have altered expression levels under salt stress through the RNA-seq database, and 10 of them were found to be highly expressed in the shoot. It was also found that, eight candidate genes (LOC_Os01g62980, LOC_Os01g63190, LOC_Os01g63230, LOC_Os01g63280, LOC_Os01g63400, LOC_Os01g63460, and LOC_Os01g63580) for qRSL1-2 carry different haplotypes between indica and japonica rice, which exactly corresponds to the significant difference in RSL values between indica and japonica rice in this study. Most of the accessions with elite haplotypes were indica rice, which had higher RSL values. These genes with indica-japonica specific haplotypes were identified as candidate genes. Rice accessions with elite haplotypes could be used as important resources for direct seeding. This study also provides new insights into the genetic mechanism of STB.

17.
Chem Sci ; 15(11): 4019-4030, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487248

RESUMEN

The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 µg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.

18.
Multimed Tools Appl ; 81(21): 29785-29797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401028

RESUMEN

Due to the outbreak of the COVID-19 pandemic, wearing masks in public areas has become an effective way to slow the spread of disease. However, it also brings some challenges to applications in daily life as half of the face is occluded. Therefore, the idea of removing masks by face inpainting appeared. Face inpainting has achieved promising performance but always fails to guarantee high-fidelity. In this paper, we present a novel mask removal inpainting network based on face attributes known in advance including nose, chubby, makeup, gender, mouth, beard and young, aiming to ensure the repaired face image is closer to ground truth. To achieve this, a dual pipeline network based on GANs has been proposed, one of which is a reconstructive path used in training that utilizes missing regions in ground truth to get prior distribution, while the other is a generative path for predicting information in the masked region. To establish the process of mask removal, we build a synthetic facial occlusion that mimics the real mask. Experiments show that our method not only generates faces more similarly aligned with real attributes, but also ensures semantic and structural rationality compared with state-of-the-art methods.

19.
Chem Sci ; 13(37): 11074-11082, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36320483

RESUMEN

The efficient transformation of nitroaromatics to functional molecules such as N-heterocycles has been an attractive and significant topic in synthesis chemistry. Herein, a photoexcited nitro-induced strategy for switchable annulations of 2-nitroarylethanols was developed to construct N-heterocycles including indoles, N-hydroxyl oxindoles and N-H oxindoles. The metal- and photocatalyst-free reaction proceeds through intramolecular redox C-N coupling of branched hydroxyalkyl and nitro units, which is initiated by a double hydrogen atom abstraction (d-HAA) process. The key to the switchable reaction outcomes is the mediation of a diboron reagent by its favorable oxy-transfer reactivity to in situ generated nitroso species. The utility of this protocol was well demonstrated by broad substrate scope, excellent yields, functional group tolerance and wide applications. Finally, detailed mechanistic studies were performed, and kinetic isotope effect (KIE) experiments indicate that the homolysis of the C-H bond is involved in the rate-determining step.

20.
Front Plant Sci ; 13: 934515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909718

RESUMEN

Salt stress is one of the factors that limits rice production, and an important task for researchers is to cultivate rice with strong salt tolerance. In this study, 211 rice accessions were used to determine salt tolerance germinability (STG) indices and conduct a genome-wide association study (GWAS) using 36,727 SNPs. The relative germination energy (RGE), relative germination index (RGI), relative vigor index (RVI), relative mean germination time (RMGT), relative shoot length (RSL), and relative root length (RRL) were used to determine the STG indices in rice. A total of 43 QTLs, including 15 for the RGE, 6 for the RGI, 7 for the RVI, 3 for the RMGT, 1 for the RSL, and 11 for the RRL, were identified on nine chromosome regions under 60 and 100 mM NaCl conditions. For these STG-related QTLs, 18 QTLs were co-localized with previous studies, and some characterized salt-tolerance genes, such as OsCOIN, OsHsp17.0, and OsDREB2A, are located in these QTL candidates. Among the 25 novel QTLs, qRGE60-1-2 co-localized with qRGI60-1-1 on chromosome 1, and qRGE60-3-1 and qRVI60-3-1 co-localized on chromosome 3. According to the RNA-seq database, 16 genes, including nine for qRGE60-1-2 (qRGI60-1-1) and seven for qRGE60-3-1 (qRVI60-3-1), were found to show significant differences in their expression levels between the control and salt treatments. Furthermore, the expression patterns of these differentially expressed genes were analyzed, and nine genes (five for qRGE60-1-2 and four for qRGE60-3-1) were highly expressed in embryos at the germination stage. Haplotype analysis of these nine genes showed that the rice varieties with elite haplotypes in the LOC_Os03g13560, LOC_Os03g13840, and LOC_Os03g14180 genes had high STG. GWAS validated the known genes underlying salt tolerance and identified novel loci that could enrich the current gene pool related to salt tolerance. The resources with high STG and significant loci identified in this study are potentially useful in breeding for salt tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA