Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1372128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505544

RESUMEN

Mixing with different broadleaf trees into the monocultures of Cunninghamia lanceolata is widely adopted as an efficient transformation of the pure C. lanceolata forest. However, it is unclear how native broad-leaved trees influence the belowground ecological environment of the pure C. lanceolata culture plantation in nutrient-poor soil of South China. Herein, we aimed to investigate how a long-time mixing with native broadleaf trees shape soil microbial community of the pure C. lanceolata forest across different soil depth (0-20 cm and 20-40 cm) and to clarify relationships between the modified soil microbial community and those affected soil chemical properties. Using high-throughput sequencing technology, microbial compositions from the mixed C. lanceolata-broadleaf forest and the pure C. lanceolata forest were analyzed. Network analysis was utilized to investigate correlations among microorganisms, and network robustness was assessed by calculating network natural connectivity. Results demonstrated that the content of soil microbial biomass carbon and nitrogen, total phosphorus and pH in mixed forest stand were significantly higher than those in pure forest stand, except for available phosphorus in topsoil (0-20 cm). Simultaneously, the mixed C. lanceolata-broadleaf forest has a more homogeneous bacterial and fungal communities across different soil depth compared with the pure C. lanceolata forest, wherein the mixed forest recruited more diverse bacterial community in subsoil (20-40 cm) and reduced the diversity of fungal community in topsoil. Meanwhile, the mixed forest showed higher bacterial community stability while the pure forest showed higher fungal community stability. Moreover, bacterial communities showed significant correlations with various soil chemical indicators, whereas fungal communities exhibited correlations with only TP and pH. Therefore, the mixed C. lanceolata-broadleaf forest rely on their recruiting bacterial community to enhance and maintain the higher nutrient status of soil while the pure C. lanceolata forest rely on some specific fungi to satisfy their phosphorus requirement for survive strategy.

2.
Sci Rep ; 14(1): 13468, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867064

RESUMEN

Sewage sludge (SS) application to forest plantation soils as a fertilizer and/or soil amendment is increasingly adopted in plantation forest management. However, the potential risks of SS-derived heavy metals (HMs) remain a concern. Many factors, including woodland slope may affect the risks, but the understanding of this issue is limited. This research evaluated the HMs migration via surface runoff, interflow, and sediments when SS was applied in woodlands of varying slopes. We conducted indoor rainfall simulations and natural rainfall experiments to clarify the effect of slope on the migration of HMs via runoff (including surface and interflow) and sediments. In the simulated rainfall experiment, HMs lost via sediments increased by 9.79-27.28% when the slope increased from 5° to 25°. However, in the natural rainfall experiment, when the slope of forested land increased from 7° to 23°, HMs lost via surface runoff increased by 2.38% to 6.13%. These results indciate that the surface runoff water on a high slope (25°) posed high water quality pollution risks. The migration of HMs via surface runoff water or interflow increased as the steepness of the slope increased. The total migration of Cu, Zn, Pb, Ni, Cr and Cd via sediment greatly exceeded that via surface runoff and interflow. Particles ≤ 0.05 mm contributed the most to the ecological risks posed by sediments. Cd was the main source of potential ecological risks in sediments under both experimental conditions.

3.
Sci Total Environ ; 948: 174820, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032742

RESUMEN

The environmental risks of migration of heavy metals (HMs) following applications of sewage sludge (SS) to forest soils are garnering increased attention. Plant litter at the forest floor may modify HM migration pathways through impacts on soil aggregates and water/soil erosion; however, HM migration responses to plant litter are poorly understood. The aim of this study was to determine the effects of plant litter cover on HMs migration, and water and soil erosion following the application of SS to subtropical forest soils. Effects of addition of SS along and SS plus plant litter at 0.75 or 1.5 kg m-2 on the migration of cadmium, chromium, copper, nickel, lead, and zinc in surface runoff, soil interflow, and sediments were quantified across nine simulated rainfall events in a laboratory experiment and following natural intense rain events in a field experiment. Addition of SS elevated HM concentrations in surface runoff by 38.7 to 98.5 %, in soil interflow by 48.3 to 312.5 %, and in sediment by 28.5 to 149.4 %, and increased the production of sediment aggregates <0.05 mm that led to greater cumulative migrations of HMs in surface runoff and sediment; sediment accounted for 89.5 % of HM migrations. Addition of plant litter reduced cumulative migration of HMs by 87.1-97.27 %; however, the higher rate of plant litter led to a decrease in surface runoff and sediment yield, and an increase in soil interflow. Addition of plant litter shifted the main pathway of HM migration from sediment to surface runoff and soil interflow. The potential ecological HM risk index was "low" for each treatment. We found consistency in HM concentrations and migrations via surface runoff between the field and laboratory experiments. Overall, the addition of plant litter with SS mitigated soil erosion and reduced total migration of HMs, resulting in a 88.7-97.3 % decrease in the ecological risk index of the six HMs. We conclude that the addition of plant litter may provide a management strategy for the mitigation of HM risks to environmental safety for the disposal of SS in subtropical forest systems.


Asunto(s)
Bosques , Metales Pesados , Aguas del Alcantarillado , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Monitoreo del Ambiente , Erosión del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA