Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 28(56): e202201590, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-35894115

RESUMEN

The selective immobilization of noble metals right at the place where photogenerated electrons migrate through the photodeposition approach is a unique strategy to load cocatalysts on semiconductors for solar hydrogen production. However, a poor metal-semiconductor interaction is often formed, which not only hinders the interfacial charge transfer, but also results in the easy aggregation and shedding of cocatalysts during photocatalytic reactions. Herein, it is demonstrated that the photodeposited ultrafine metals, such as nanosized Au, can be well stabilized on TiO2 nanocrystallines without sintering by employing a sacrificial carbon coating annealing strategy to strengthen the metal-support interaction. Benefiting from the improved interfacial contact between Au and TiO2 for fast charge transfer and the well-preserved size-dependent catalytic behavior of Au nanoparticles toward hydrogen evolution reaction, the annealed Au/TiO2 exhibits a significant enhanced activity toward photocatalytic H2 production with good durability.

2.
Nat Commun ; 10(1): 1611, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962455

RESUMEN

The design and synthesis of robust sintering-resistant nanocatalysts for high-temperature oxidation reactions is ubiquitous in many industrial catalytic processes and still a big challenge in implementing nanostructured metal catalyst systems. Herein, we demonstrate a strategy for designing robust nanocatalysts through a sintering-resistant support via compartmentalization. Ultrafine palladium active phases can be highly dispersed and thermally stabilized by nanosheet-assembled γ-Al2O3 (NA-Al2O3) architectures. The NA-Al2O3 architectures with unique flowerlike morphologies not only efficiently suppress the lamellar aggregation and irreversible phase transformation of γ-Al2O3 nanosheets at elevated temperatures to avoid the sintering and encapsulation of metal phases, but also exhibit significant structural advantages for heterogeneous reactions, such as fast mass transport and easy access to active sites. This is a facile stabilization strategy that can be further extended to improve the thermal stability of other Al2O3-supported nanocatalysts for industrial catalytic applications, in particular for those involving high-temperature reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA