Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373460

RESUMEN

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Camellia sinensis/genética , Fotosíntesis , Tilacoides/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo
2.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557927

RESUMEN

Sweet tea is a popular herbal drink in southwest China, and it is usually made from the shoots and tender leaves of Lithocarpus litseifolius. The sweet taste is mainly attributed to its high concentration of dihydrochalcones. The distribution and biosynthesis of dihydrochaldones in sweet tea, as well as neuroprotective effects in vitro and in vivo tests, are reviewed in this paper. Dihydrochalones are mainly composed of phloretin and its glycosides, namely, trilobatin and phloridzin, and enriched in tender leaves with significant geographical specificity. Biosynthesis of the dihydrochalones follows part of the phenylpropanoid and a branch of flavonoid metabolic pathways and is regulated by expression of the genes, including phenylalanine ammonia-lyase, 4-coumarate: coenzyme A ligase, trans-cinnamic acid-4-hydroxylase and hydroxycinnamoyl-CoA double bond reductase. The dihydrochalones have been proven to exert a significant neuroprotective effect through their regulation against Aß deposition, tau protein hyperphosphorylation, oxidative stress, inflammation and apoptosis.


Asunto(s)
Chalconas , Gusto , Neuroprotección , Chalconas/farmacología , Té/genética
3.
Molecules ; 27(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566160

RESUMEN

Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only 'Chunyu2' and 'Jinguanyin' dry teas had floral scents. 'Chunyu2' green tea contained the highest content of total volatiles (134.75 µg/g) among green tea samples, while 'Jinguanyin' black tea contained the highest content of total volatiles (1908.05 µg/g) among black tea samples. The principal component analysis study showed that 'Chunyu2' and 'Jinguanyin' green teas and 'Chunyu2' black tea were characterized by the abundant presence of certain alcohols with floral aroma, while 'Jinguanyin' black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Alcoholes/análisis , Camellia sinensis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Fitomejoramiento , Té/química , Compuestos Orgánicos Volátiles/análisis
4.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209485

RESUMEN

(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Té/química , Animales , Antivirales/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Humanos , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos
5.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158302

RESUMEN

Flavonol glycosides are important components of tea leaves, contributing to the bioactivities as well as bitterness and astringency of tea. However, the standards of many flavonol triglycosides are still not available, which restricts both sensory and bioactivity studies on flavonol glycosides. In the present study, we established a simultaneous preparation method of seven flavonol triglycoside individuals from tea leaves, which consisted of two steps: polyamide column enrichment and preparative HPLC isolation. The structures of seven flavonol triglycoside isolates were identified by mass and UV absorption spectra, four of which were further characterized by nuclear magnetic resonance spectra, namely, quercetin-3-O-glucosyl-rhamnosyl-glucoside, quercetin-3-O-rhamnosyl-rhamnosyl-glucoside, kaempferol-3-O-glucosyl-rhamnosyl-glucoside and kaempferol-O-rhamnosyl-rhamnosyl-glucoside. The purities of all isolated flavonol triglycosides were above 95% based on HPLC, and the production yield of total flavonol glycosides from dry tea was 0.487%. Our study provides a preparation method of flavonol triglycosides from tea leaves, with relatively low cost of time and solvent but high production yield.


Asunto(s)
Camellia sinensis/química , Flavonoles , Glucósidos , Hojas de la Planta/química , Flavonoles/química , Flavonoles/aislamiento & purificación , Glucósidos/química , Glucósidos/aislamiento & purificación
6.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108845

RESUMEN

Anthracnose is a major leaf disease in tea plant induced by Colletotrichum, which has led to substantial losses in yield and quality of tea. The molecular mechanism with regards to responses or resistance to anthracnose in tea remains unclear. A de novo transcriptome assembly dataset was generated from healthy and anthracnose-infected leaves on tea cultivars "Longjing-43" (LJ43) and "Zhenong-139" (ZN139), with 381.52 million pair-end reads, encompassing 47.78 billion bases. The unigenes were annotated versus Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Swiss-prot. The number of differential expression genes (DEGs) detected between healthy and infected leaves was 1621 in LJ43 and 3089 in ZN139. The GO and KEGG enrichment analysis revealed that the DEGs were highly enriched in catalytic activity, oxidation-reduction, cell-wall reinforcement, plant hormone signal transduction and plant-pathogen interaction. Further studies by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) showed that expression of genes involved in endogenous salicylic acid biosynthesis and also accumulation of foliar salicylic acid are involved in the response of tea plant to anthracnose infection. This study firstly provided novel insight in salicylic acid acting as a key compound in the responses of tea plant to anthracnose disease. The transcriptome dataset in this study will facilitate to profile gene expression and metabolic networks associated with tea plant immunity against anthracnose.


Asunto(s)
Camellia sinensis/genética , Colletotrichum/patogenicidad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Camellia sinensis/metabolismo , Camellia sinensis/microbiología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
7.
Molecules ; 24(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857144

RESUMEN

There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (-)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.


Asunto(s)
Catequina/análogos & derivados , Neoplasias Esofágicas/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Catequina/química , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Humanos , Polifenoles/química , Transducción de Señal/efectos de los fármacos ,
8.
BMC Cancer ; 18(1): 356, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609569

RESUMEN

BACKGROUND: The accumulated evidence has indicated the diagnostic role of cytokeratin (CK) and vimentin protein immunoassay in primary esophageal spindle cell carcinoma (PESC), which is a rare malignant tumor with epithelial and spindle components. However, it is largely unknown for the expression of CK and vimentin in pathological changes and prognosis of PESC. METHODS: Eighty-two PESC patients were identified from the esophageal and gastric cardia cancer database established by Henan Key Laboratory for Esophageal Cancer Research of Zhengzhou University. We retrospectively evaluated CK and vimentin protein expressions in PESC. Clinicopathological features were examined by means of univariate and multivariate survival analyses. Furthermore, the co-expression value of cytokeratin and vimentin was analyzed by receiver operating characteristic (ROC) curve. RESULTS: The positive pan-cytokeratins AE1/AE3 (AE1/AE3 for short) staining was chiefly observed in cytoplasm of epithelial component tumor cells, with a positive detection rate of 85.4% (70/82). Interestingly, 19 cases showed AE1/AE3 positive staining both in epithelial and spindle components (23.2%). However, AE1/AE3 expression was not observed with any significant association with age, gender, tumor location, gross appearance, lymph node metastasis and TNM stage. Furthermore, AE1/AE3 protein expression does not show any effect on survival. Similar results were observed for vimentin immunoassay. However, in comparison with a single protein, the predictive power of AE1/AE3 and vimentin proteins signature was increased apparently than with single signature [0.75 (95% CI = 0.68-0.82) with single protein v.s. 0.89 (95% CI = 0.85-0.94) with AE1/AE3 and vimentin proteins]. The 1-, 3-, 5- and 7-year survival rates for PESC patients in this study were 79.3%, 46.3%, 28.0% and 15.9%, respectively. Multivariate analysis demonstrated age and TNM stage were independent prognostic factors for overall survival (P = 0.036 and 0.003, respectively). It is noteworthy that only 17.1% patients had a PESC accurate diagnosis by biopsy pathology before surgery (14/82). 72.4% PESC patients with biopsy pathology before surgery had been diagnosed as squamous cell carcinoma. CONCLUSION: The present study demonstrates that cytokeratin and vimentin protein immunoassay is a useful biomarker for PESC accurate diagnosis, but not prognosis. The co-expression of cytokeratin and vimentin in both epithelial and spindle components suggest the possibility of single clone origination for PESC.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Queratinas/metabolismo , Sarcoma/metabolismo , Vimentina/metabolismo , Adulto , Anciano , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Biomarcadores de Tumor , Antiportadores de Cloruro-Bicarbonato/genética , Antiportadores de Cloruro-Bicarbonato/metabolismo , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Queratinas/genética , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Curva ROC , Sarcoma/genética , Vimentina/genética
9.
Molecules ; 23(9)2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213130

RESUMEN

Cervical cancer is the fourth most common gynecological cancer worldwide. Although prophylactic vaccination presents the most effective method for cervical cancer prevention, chemotherapy is still the primary invasive intervention. It is urgent to exploit low-toxic natural anticancer drugs on account of high cytotoxicity and side-effects of conventional agents. As a natural product, (-)-epigallocatechingallate (EGCG) has abilities in anti-proliferation, anti-metastasis and pro-apoptosis of cervical cancer cells. Moreover, EGCG also has pharmaceutical synergistic effects with conventional agents such as cisplatin (CDDP) and bleomycin (BLM). The underlying mechanisms of EGCG suppressive effects on cervical cancer are reviewed in this article. Further research directions and ambiguous results are also discussed.


Asunto(s)
Anticarcinógenos/uso terapéutico , Catequina/análogos & derivados , Neoplasias del Cuello Uterino/tratamiento farmacológico , Anticarcinógenos/farmacología , Bleomicina/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/uso terapéutico , Sinergismo Farmacológico , Femenino , Humanos
10.
Molecules ; 23(3)2018 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-29495349

RESUMEN

As the population ages, neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD) impose a heavy burden on society and families. The pathogeneses of PD and AD are complex. There are no radical cures for the diseases, and existing therapeutic agents for PD and AD have diverse side effects. Tea contains many bioactive components such as polyphenols, theanine, caffeine, and theaflavins. Some investigations of epidemiology have demonstrated that drinking tea can decrease the risk of PD and AD. Tea polyphenols can lower the morbidity of PD and AD by reducing oxidative stress and regulating signaling pathways and metal chelation. Theanine can inhibit the glutamate receptors and regulate the extracellular concentration of glutamine, presenting neuroprotective effects. Additionally, the neuroprotective mechanisms of caffeine and theaflavins may contribute to the ability to antagonize the adenosine receptor A2AR and the antioxidant properties, respectively. Thus, tea bioactive components might be useful for neuronal degeneration treatment in the future. In the present paper, the neuro protection and the mechanisms of tea and its bioactive components are reviewed. Moreover, the potential challenges and future work are also discussed.


Asunto(s)
Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Té/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Biflavonoides/química , Biflavonoides/farmacología , Cafeína/química , Cafeína/farmacología , Catequina/química , Catequina/farmacología , Glutamatos/química , Glutamatos/farmacología , Interacciones de Hierba-Droga , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos
11.
Molecules ; 23(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217074

RESUMEN

Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.


Asunto(s)
Camellia sinensis/química , Catequina/farmacocinética , Animales , Disponibilidad Biológica , Catequina/química , Sistemas de Liberación de Medicamentos , Humanos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Extractos Vegetales/química , Extractos Vegetales/farmacocinética
12.
Molecules ; 23(2)2018 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-29462972

RESUMEN

(-)-Epigallocatechin gallate (EGCG) has attracted significant research interest due to its health-promoting effects such as antioxidation, anti-inflammation and anti-cancer activities. However, its instability and poor bioavailability have largely limited its efficacy and application. Food-grade materials such as proteins, carbohydrates and lipids show biodegradability, biocompatibility and biofunctionality properties. Food-grade encapsulation systems are usually used to improve the bioavailability of EGCG. In the present paper, we provide an overview of materials and techniques used in encapsulating EGCG, in which the adsorption mechanisms of food-grade systems during in vitro digestion are reviewed. Moreover, the potential challenges and future work using food-grade encapsulates for delivering EGCG are also discussed.


Asunto(s)
Catequina/análogos & derivados , Composición de Medicamentos , Alimentos , Carbohidratos/química , Catequina/química , Humanos , Lípidos/química , Té/química
13.
Molecules ; 22(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28531120

RESUMEN

Diabetes mellitus (DM) is a chronic endocrine disease resulted from insulin secretory defect or insulin resistance and it is a leading cause of death around the world. The care of DM patients consumes a huge budget due to the high frequency of consultations and long hospitalizations, making DM a serious threat to both human health and global economies. Tea contains abundant polyphenols and caffeine which showed antidiabetic activity, so the development of antidiabetic medications from tea and its extracts is increasingly receiving attention. However, the results claiming an association between tea consumption and reduced DM risk are inconsistent. The advances in the epidemiologic evidence and the underlying antidiabetic mechanisms of tea are reviewed in this paper. The inconsistent results and the possible causes behind them are also discussed.


Asunto(s)
Camellia sinensis/química , Catequina/farmacología , Diabetes Mellitus/dietoterapia , Hipoglucemiantes/farmacología , Polifenoles/farmacología , Té/química , Animales , Cafeína/química , Cafeína/aislamiento & purificación , Cafeína/farmacología , Catequina/química , Catequina/aislamiento & purificación , Diabetes Mellitus/epidemiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Estudios Epidemiológicos , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Resistencia a la Insulina , Polifenoles/química , Polifenoles/aislamiento & purificación
14.
Molecules ; 21(10)2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27735869

RESUMEN

Ultraviolet B (UVB) photosensitivities of eight catechins were screened. In both water and ethanol, epicatechin (EC, 575 µM) and catechin (C, 575 µM) exhibited low photostabilities under 6 h UVB radiation with the generation of yellow photoproducts, while other catechins (epigallocatechin gallate, epigallocatechin, epicatechin gallate, gallocatechingallate, gallocatechin, catechin gallate) were relatively UVB-insensitive. Photoisomerization and photolysis were two important UVB-induced reactions to EC whereas photolysis was the dominant reaction for C. The influencing factors of time (2-10 h), solvent (water, ethanol) and substrate concentration (71.875-1150 µM) on UVB-induced chemical conversions of EC and C were investigated, and eight photoproducts were identified through ultra performance liquid chromatography-diode array detection-tandem mass spectrometry (UPLC-DAD-MS/MS) and ¹H nuclear magnetic resonance (¹H-NMR analysis). Photolysis reaction involved two pathways, including radical reaction and photo-induced electron transfer reaction. The 2,2-diphenylpicrylhydrazyl (DPPH) scavenging abilities of eight catechins did not change upon 6 h UVB irradiation. EC and C are photosensitive catechins among eight catechins causing deep color.


Asunto(s)
Catequina/química , Procesos Fotoquímicos , Té/química , Rayos Ultravioleta , Cromatografía Líquida de Alta Presión , Fotoquímica , Espectrometría de Masas en Tándem
15.
Molecules ; 21(11)2016 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-27809221

RESUMEN

Tea (Camellia sinensis) is a beverage beneficial to health and is also a source for extracting bioactive components such as theanine, tea polyphenols (TPP) and tea polysaccharides (TPS). TPS is a group of heteropolysaccharides bound with proteins. There is evidence showing that TPS not only improves immunity but also has various bioactivities, such as antioxidant, antitumor, antihyperglycemia, and anti-inflammation. However, inconsistent results concerning chemical composition and bioactivity of TPS have been published in recent years. The advances in chemical composition and bioactivities of TPS are reviewed in the present paper. The inconsistent and controversial results regarding composition and bioactivities of TPS are also discussed.


Asunto(s)
Polisacáridos/química , Polisacáridos/farmacología , Té/química , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Disponibilidad Biológica , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoglucemiantes/farmacología , Estructura Molecular , Polisacáridos/farmacocinética
16.
Hortic Res ; 11(1): uhad231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288253

RESUMEN

Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of CsMYB67 was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of CsMYB67 and CsTTG1 promoted the transcription of CsANS promoter in the tobacco system. CsTTG1 was bound to the promoter of CsANS based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of CsANS through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of CsANS. Besides, CsMYB67 also enhanced the transcription of CsFLS and CsUFGT through forming transcription factor complexes. The function of CsMYB67 on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As CsMYB67 was suppressed, the transcriptional level of CsFLS was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.

17.
Plant Physiol Biochem ; 212: 108778, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838570

RESUMEN

The albino tea cultivar is one of the most important germplasms for key gene mining and high-quality tea producing. In order to elucidate the chlorophyll-deficient mechanism of albino cultivar 'Huangjinya' and its offspring, color difference, photosynthetic pigments and the relevant genes' expression of the tender shoots were comprehensively investigated in this study. Among the tested 16 offspring, 5 exhibited albino phenotype in spring and autumn, 3 showed albino phenotype in spring but normal green in autumn, while the rests were all normal green. The shoot of albino offspring had significantly higher lightness and/or yellowness than that of green ones, and possessed dramatically lower photosynthetic pigments and chlorophyll precursor protochlorophyllide (Pchlide), as well as higher chlorophyll a/chlorophyll b but lower chlorophylls/carotenoids in comparison with green ones. Among the tested genes involved in chlorophyll and carotenoid metabolism pathways, expression of the magnesium protoporphyrin IX monomethyl ester cyclase (CRD), 3,8-divinyl chlorophyllide 8-vinyl reductase (DVR), 5-aminolevulinate dehydratase 1 (HEMB1), 1-deoxy-D-xylulose 5-phosphate synthase 1 (DXS1) and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ISPH) was remarkably down-regulated in shoots of the albino offspring. Color difference indices of the offspring were significantly correlated with the levels of photosynthetic pigments and Pchlide, and low level of chlorophylls in shoot of albino offspring was mainly due to conversion obstacle from magnesium protoporphyrin Ⅸ (Mg-Proto IX) to Pchlide which might be attributed to down-regulatory expression of CRD and DVR.


Asunto(s)
Clorofila , Fenotipo , Protoclorofilida , Protoporfirinas , Clorofila/metabolismo , Protoclorofilida/metabolismo , Protoporfirinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fotosíntesis
18.
Plant Physiol Biochem ; 201: 107875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451003

RESUMEN

Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Fitomejoramiento , Flavonoides/metabolismo , Hojas de la Planta/metabolismo , , Regulación de la Expresión Génica de las Plantas , Transcriptoma
19.
J Adv Res ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38151116

RESUMEN

INTRODUCTION: Light-harvesting chlorophyll a/b-binding (LHCB) protein complexes of photosystem II are integral to the formation of thylakoid structure and the photosynthetic process. They play an important role in photoprotection, a crucial process in leaf development under low-temperature stress. Nonetheless, potential key genes directly related to low-temperature response and albino phenotype have not been precisely identified in tea plant. Moreover, there are no studies simultaneously investigating multiple albino tea cultivars with different temperature sensitivity. OBJECTIVES: The study aimed to clarify the basic characteristics of CsLHCB gene family members, and identify critical CsLHCB genes potentially influential in leaf color phenotypic variation and low-temperature stress response by contrasting green and albino tea cultivars. Concurrently, exploring the differential expression of the CsLHCB gene family across diverse temperature-sensitive albino tea cultivars. METHODS: We identified 20 putative CsLHCB genes according to phylogenetic analysis. Evolutionary relationships, gene duplication, chromosomal localization, and structures were analyzed by TBtools; the physiological and biochemical characteristics were analyzed by protein analysis websites; the differences in coding sequences and protein accumulation in green and albino tea cultivars, gene expression with maturity were tested by molecular biology technology; and protein interaction was analyzed in the STRING database. RESULTS: All genes were categorized into seven groups, mapping onto 7 chromosomes, including three tandem and one segmental duplications. They all own a conserved chlorophyll A/B binding protein domain. The expression of CsLHCB genes was tissue-specific, predominantly in leaves. CsLHCB5 may play a key role in the process of leaf maturation and senescence. In contrast to CsLHCB5, CsLHCB1.1, CsLHCB2, and CsLHCB3.2 were highly conserved in amino acid sequence between green and albino tea cultivars. In albino tea cultivars, unlike in green cultivars, the expression of CsLHCB1.1, CsLHCB1.2, and CsLHCB2 was down-regulated under low-temperature stress. The accumulation of CsLHCB1 and CsLHCB5 proteins was lower in albino tea cultivars. Greater accumulation of CsLHCB2 protein was detected in RX1 and RX2 compared to other albino cultivars. CONCLUSIONS: CsLHCB1.1, CsLHCB1.2, and CsLHCB2 played a role in the response to low-temperature stress. The amino acid sequence site mutation of CsLHCB5 would distinguish the green and albino tea cultivars. The less accumulation of CsLHCB1 and CsLHCB5 had a potential influence on albino leaves. Albino cultivars more sensitive to temperature exhibited lower CsLHCB gene expression. CsLHCB2 may serve as an indicator of temperature sensitivity differences in albino tea cultivars. This study could provide a reference for further studies of the functions of the CsLHCB family and contribute to research on the mechanism of the albino in tea plant.

20.
Front Nutr ; 9: 1060783, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545470

RESUMEN

Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA