Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 912: 168834, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38036125

RESUMEN

Atmosphere is an important component of the microplastics (MPs) cycle. However, studies on atmospheric MPs in peri-urban farmland ecosystems are limited. Herein, the occurrence, influencing factors and geographic sources of atmospheric MPs in peri-urban farmland ecosystems have been analyzed. The average deposition flux of atmospheric MPs was found to be 167.09 ± 92.03 item·m-2·d-1. Around 68 % MPs had particle size <1000 µm, while the main colors of MPs were black (40.71 %) and blue (20.64 %). Approximately 91 % MPs were fibers, while polyethylene terephthalate (49 %) and rayon (36.93 %) were observed as the major microplastic types. The main factors influencing the atmospheric deposition of MPs were gross domestic product (GDP), population density, air pressure, and wind direction. Deposition fluxes exhibited positive correlations with GDP, population density and air pressure, and negative correlations with wind direction. Combined with the backward trajectory model, MPs were mainly found to be originated from the southeast in September and from the northwest in October-February. The study of atmospheric MPs in farmland ecosystems in peri-urban areas is important for the protection of ecological environment, prevention of human diseases and control of MPs pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Beijing , Plásticos , Ecosistema , Granjas , China , Monitoreo del Ambiente
2.
Mar Pollut Bull ; 199: 116019, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184859

RESUMEN

In the precent study, the microplastics (MPs) pollution level was evaluated in diverse environmental samples from the Yellow River Delta. The results indicated that the abundance of MPs in water, sediment and soil samples ranged from 0.50 to 7.83 items·L-1, 200 to 4200 items·kg-1, and 100 to 1400 items·kg-1, respectively. Film form of MPs was dominant in water, while fiber MPs were dominant in both sediment and soil samples. In all samples, most MPs were < 1 mm in size. White was the main color in water, black was the main color in sediment and soil samples. The most common MPs type was polyethylene (33 %) in water, while rayon accounted for the majority of MPs in sediment (42 %) and soil (70 %) samples. The redundancy analysis results showed that MPs in water and sediment were more affected by water quality, while soil MPs were easily affected by landscape pattern.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos , Ríos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , China , Suelo
3.
Sci Total Environ ; 883: 163567, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37094671

RESUMEN

As the research on microplastics (MPs) has intensified, more attention has been paid to MPs deposition in the atmosphere. This study further explores and compares the characteristics, the possible sources and influencing factors of deposition of MPs in three different ecosystems: forest, agricultural and residential area in Beijing. It was found that the deposited plastics were mostly white or black fibres, with PET and RY as the main MPs types. The range of deposition fluxes was 67.06-461.02 item·m-2·d-1, with highest deposition in residential area and lowest in forest, significant differences in MPs characteristics between environments. Based on MPs composition and shape, combined with backward trajectory analysis, the main sources of MPs were found to be textiles. Deposition of MPs was found to be influenced by environmental and meteorological factors. Factors such as gross domestic product and population density had a significant impact on the deposition flux, while wind played a diluting role for atmospheric MPs. The study investigated the characteristics of MPs in different ecosystems which may help to understand the transport patterns of MPs and is of great importance for the management of MPs pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA