Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568034

RESUMEN

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética
2.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35460644

RESUMEN

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Macaca mulatta , Ratones , ARN Circular/genética , SARS-CoV-2/genética , Vacunas Sintéticas/genética , Vacunas de ARNm
3.
Proc Natl Acad Sci U S A ; 121(10): e2317026121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408250

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.


Asunto(s)
COVID-19 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Nature ; 586(7830): 572-577, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32726802

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory disease called coronavirus disease 2019 (COVID-19), the spread of which has led to a pandemic. An effective preventive vaccine against this virus is urgently needed. As an essential step during infection, SARS-CoV-2 uses the receptor-binding domain (RBD) of the spike protein to engage with the receptor angiotensin-converting enzyme 2 (ACE2) on host cells1,2. Here we show that a recombinant vaccine that comprises residues 319-545 of the RBD of the spike protein induces a potent functional antibody response in immunized mice, rabbits and non-human primates (Macaca mulatta) as early as 7 or 14 days after the injection of a single vaccine dose. The sera from the immunized animals blocked the binding of the RBD to ACE2, which is expressed on the cell surface, and neutralized infection with a SARS-CoV-2 pseudovirus and live SARS-CoV-2 in vitro. Notably, vaccination also provided protection in non-human primates to an in vivo challenge with SARS-CoV-2. We found increased levels of RBD-specific antibodies in the sera of patients with COVID-19. We show that several immune pathways and CD4 T lymphocytes are involved in the induction of the vaccine antibody response. Our findings highlight the importance of the RBD domain in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective vaccine through the induction of antibodies against the RBD domain.


Asunto(s)
Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , COVID-19 , Vacunas contra la COVID-19 , Humanos , Macaca mulatta/inmunología , Macaca mulatta/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Animales , Modelos Moleculares , Dominios Proteicos , SARS-CoV-2 , Suero/inmunología , Bazo/citología , Bazo/inmunología , Linfocitos T/inmunología , Vacunación
5.
BMC Genomics ; 25(1): 639, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926642

RESUMEN

BACKGROUND: Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS: Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS: Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.


Asunto(s)
Envejecimiento , Biomarcadores , Exosomas , Macaca mulatta , Proteómica , Animales , Envejecimiento/genética , Biomarcadores/sangre , Exosomas/metabolismo , Exosomas/genética , Proteómica/métodos , Transcriptoma , Perfilación de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/sangre , ARN Largo no Codificante/metabolismo , Modelos Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteoma/metabolismo , Genómica/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38813597

RESUMEN

Chikungunya virus (CHIKV) is a neglected arthropod-borne and anthropogenic alphavirus. Over the past two decades, the CHIKV distribution has undergone significant changes worldwide, from the original tropics and subtropics regions to temperate regions, which has attracted global attention. However, the interactions between CHIKV and its host remain insufficiently understood, which dampens the need for the development of an anti-CHIKV strategy. In this study, on the basis of the optimal overexpression of non-structural protein 4 (nsP4), we explore host interactions of CHIKV nsP4 using mass spectrometry-based protein-protein interaction approaches. The results reveal that some cellular proteins that interact with nsP4 are enriched in the ubiquitin-proteasome pathway. Specifically, the scaffold protein receptor for activated C kinase 1 (RACK1) is identified as a novel host interactor and regulator of CHIKV nsP4. The inhibition of the interaction between RACK1 and nsP4 by harringtonolide results in the reduction of nsP4, which is caused by the promotion of degradation but not the inhibition of nsP4 translation. Furthermore, the decrease in nsP4 triggered by the RACK1 inhibitor can be reversed by the proteasome inhibitor MG132, suggesting that RACK1 can protect nsP4 from degradation through the ubiquitin-proteasome pathway. This study reveals a novel mechanism by which the host factor RACK1 regulates CHIKV nsP4, which could be a potential target for developing drugs against CHIKV.

7.
J Med Virol ; 95(1): e28161, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36124363

RESUMEN

Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Animales , Ratones , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2/genética , ARN Mensajero/genética , Macaca mulatta/genética , Células Endoteliales , Transcriptoma , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
8.
J Med Virol ; 95(6): e28846, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282766

RESUMEN

Since the first SARS-CoV-2 outbreak in late 2019, the SARS-CoV-2 genome has harbored multiple mutations, especially spike protein mutations. The currently fast-spreading Omicron variant that manifests without symptoms or with upper respiratory diseases has been recognized as a serious global public health problem. However, its pathological mechanism is largely unknown. In this work, rhesus macaques, hamsters, and BALB/C mice were employed as animal models to explore the pathogenesis of Omicron (B.1.1.529). Notably, Omicron (B.1.1.529) infected the nasal turbinates, tracheae, bronchi, and lungs of hamsters and BALB/C mice with higher viral loads than in those of rhesus macaques. Severe histopathological damage and inflammatory responses were observed in the lungs of Omicron (B.1.1.529)-infected animals. In addition, viral replication was found in multiple extrapulmonary organs. Results indicated that hamsters and BALB/c mice are potential animal models for studies on the development of drugs/vaccines and therapies for Omicron (B.1.1.529).


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Cricetinae , Macaca mulatta , Ratones Endogámicos BALB C , Bronquios
9.
Gastroenterology ; 160(5): 1647-1661, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33307034

RESUMEN

BACKGROUND & AIMS: Gastrointestinal (GI) manifestations have been increasingly reported in patients with coronavirus disease 2019 (COVID-19). However, the roles of the GI tract in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are not fully understood. We investigated how the GI tract is involved in SARS-CoV-2 infection to elucidate the pathogenesis of COVID-19. METHODS: Our previously established nonhuman primate (NHP) model of COVID-19 was modified in this study to test our hypothesis. Rhesus monkeys were infected with an intragastric or intranasal challenge with SARS-CoV-2. Clinical signs were recorded after infection. Viral genomic RNA was quantified by quantitative reverse transcription polymerase chain reaction. Host responses to SARS-CoV-2 infection were evaluated by examining inflammatory cytokines, macrophages, histopathology, and mucin barrier integrity. RESULTS: Intranasal inoculation with SARS-CoV-2 led to infections and pathologic changes not only in respiratory tissues but also in digestive tissues. Expectedly, intragastric inoculation with SARS-CoV-2 resulted in the productive infection of digestive tissues and inflammation in both the lung and digestive tissues. Inflammatory cytokines were induced by both types of inoculation with SARS-CoV-2, consistent with the increased expression of CD68. Immunohistochemistry and Alcian blue/periodic acid-Schiff staining showed decreased Ki67, increased cleaved caspase 3, and decreased numbers of mucin-containing goblet cells, suggesting that the inflammation induced by these 2 types of inoculation with SARS-CoV-2 impaired the GI barrier and caused severe infections. CONCLUSIONS: Both intranasal and intragastric inoculation with SARS-CoV-2 caused pneumonia and GI dysfunction in our rhesus monkey model. Inflammatory cytokines are possible connections for the pathogenesis of SARS-CoV-2 between the respiratory and digestive systems.


Asunto(s)
COVID-19/transmisión , Gastroenteritis/patología , Tracto Gastrointestinal/patología , Pulmón/patología , Animales , Bronquios/metabolismo , Bronquios/patología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , Prueba de Ácido Nucleico para COVID-19 , Caspasa 3/metabolismo , Citocinas/inmunología , Modelos Animales de Enfermedad , Mucosa Gástrica , Gastroenteritis/metabolismo , Gastroenteritis/virología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Células Caliciformes/patología , Intestino Delgado/metabolismo , Intestino Delgado/patología , Antígeno Ki-67/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/inmunología , Pulmón/metabolismo , Macaca mulatta , Mucosa Nasal , ARN Viral/aislamiento & purificación , Distribución Aleatoria , Recto/metabolismo , Recto/patología , SARS-CoV-2 , Tráquea/metabolismo , Tráquea/patología
10.
IUBMB Life ; 74(6): 532-542, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35383402

RESUMEN

Coronavirus disease 2019, a newly emerging serious infectious disease, has spread worldwide. To date, effective drugs against the disease are limited. Traditional Chinese medicine was commonly used in treating COVID-19 patients in China. Here we tried to identify herbal effective lipid compounds from the lipid library of 92 heat-clearing and detoxication Chinese herbs. Through virtual screening, enzymatic activity and inhibition assays, and surface plasmon resonance tests, we identified lipid compounds targeting the main protease (Mpro ) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and verified their functions. Here, we found that natural lipid compounds LPC (14:0/0:0) and LPC (16:0/0:0) could target SARS-CoV-2 Mpro , recover cell death induced by SARS-CoV-2, and ameliorate acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) induced by bacterial lipopolysaccharides and virus poly (I:C) mimics in vivo and in vitro. Our results suggest that LPC (14:0/0:0) and LPC (16:0/0:0) might be potential pan remedy against ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Tratamiento Farmacológico de COVID-19 , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Lípidos , Ratones , Simulación del Acoplamiento Molecular , SARS-CoV-2
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(1): 107-111, 2018 Feb 10.
Artículo en Zh | MEDLINE | ID: mdl-29419874

RESUMEN

OBJECTIVE To assess the association of single nucleotide polymorphisms (SNPs) of the T-cadherin (CDH13) gene with metabolic syndrome (MS) among ethnic Han Chinese.METHODS Genotypes of 6 SNPs(rs11646213, rs12596316, rs3865188, rs12444338, rs12051272, and rs7195409) of the CDH13 gene among 453 patients with MS and 526 controls were determined with a TaqMan method, and their association with MS was assessed. RESULTS For 5 SNPs (rs11646213, rs3865188, rs12444338, rs12051272, and rs7195409), no difference was found in allelic and genotypic frequencies of the CDH13 gene between the two groups. Comparing with rs12596316 (AA+GG) genotype, rs12596316 AG genotype has significantly increased the risk of MS(P = 0.01,OR = 1.38,95%CI: 1.07-1.78), though no association was found between particular alleles of the rs12596316 with MS.There was no difference in the frequencies of rs11646213-rs12596316-rs3865188-rs12444338-rs12051272 haplotype between the two groups(P > 0.05). CONCLUSION No association was found between the five SNPs (rs11646213, rs3865188, rs12444338, rs12051272 and rs7195409) of the CDH13 gene with the MS, while the rs12596316AG genotype of the CDH13 gene is associated with the susceptibility to MS among ethnic Han Chinese.


Asunto(s)
Cadherinas/genética , Predisposición Genética a la Enfermedad/genética , Síndrome Metabólico/genética , Polimorfismo de Nucleótido Simple , Alelos , Pueblo Asiatico/genética , China , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/etnología , Genotipo , Haplotipos , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/etnología , Factores de Riesgo
13.
Am J Primatol ; 76(1): 65-71, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24038190

RESUMEN

Resistin protein is thought to link insulin resistance in murine models of obesity and type-2 diabetes, but the role of resistin in human studies of inflammatory metabolic disorders have generated conflicting data. Here, we describe the structure of the resistin gene using adipose tissue from non-human primates (NHPs), which have been used extensively to model a host of human diseases. Full-length cDNA from rhesus macaque resistin obtained by rapid amplification of cDNA ends (RACE) is comprised of 526 nucleotides covering an open-reading frame (ORF) that encodes a 108-amino-acid protein that is 92% homologous with the human counterpart but only 60% homologous with the murine counterpart. Using a modified polymerase chain reaction technique, we identified single nucleotide polymorphisms and a 78-bp deletion within resistin cDNA of nine rhesus macaques. Comparisons of the full-length cDNA sequence and an amplified 569-bp genomic DNA sequence revealed an error in published predictions arising from genomic studies about the gene's exon 3 region. Our data show, for the first time, the full-length macaque resistin cDNA sequence (GenBank: JF740676.1). These findings will illuminate future studies into the role of resistin in NHP models of inflammatory metabolic diseases.


Asunto(s)
Macaca mulatta/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Macaca mulatta/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia
14.
Elife ; 122024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38415809

RESUMEN

Despite intense research on mice, the transcriptional regulation of neocortical neurogenesis remains limited in humans and non-human primates. Cortical development in rhesus macaque is known to recapitulate multiple facets of cortical development in humans, including the complex composition of neural stem cells and the thicker supragranular layer. To characterize temporal shifts in transcriptomic programming responsible for differentiation from stem cells to neurons, we sampled parietal lobes of rhesus macaque at E40, E50, E70, E80, and E90, spanning the full period of prenatal neurogenesis. Single-cell RNA sequencing produced a transcriptomic atlas of developing parietal lobe in rhesus macaque neocortex. Identification of distinct cell types and neural stem cells emerging in different developmental stages revealed a terminally bifurcating trajectory from stem cells to neurons. Notably, deep-layer neurons appear in the early stages of neurogenesis, while upper-layer neurons appear later. While these different lineages show overlap in their differentiation program, cell fates are determined post-mitotically. Trajectories analysis from ventricular radial glia (vRGs) to outer radial glia (oRGs) revealed dynamic gene expression profiles and identified differential activation of BMP, FGF, and WNT signaling pathways between vRGs and oRGs. These results provide a comprehensive overview of the temporal patterns of gene expression leading to different fates of radial glial progenitors during neocortex layer formation.


Asunto(s)
Neocórtex , Células-Madre Neurales , Femenino , Embarazo , Animales , Ratones , Transcriptoma , Macaca mulatta , Perfilación de la Expresión Génica
15.
J Control Release ; 366: 479-493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184234

RESUMEN

mRNA-based vaccines and therapeutic agents hold great promise in prevention and treatment of human diseases, yet high percentage of systemic adverse effect in clinic remains a big safety concern. One major potential cause is a high level of leakage of the locally inoculated mRNA vaccine nanoparticles into circulation. We have screened and optimized a core-shell structured lipopolyplex (LPP) formulation for mRNA with a tissue-retention property. Upon intramuscular inoculation, the mRNA-encapsulated LPP nanoparticles were preferentially taken up by the phagocytic antigen-presentation cells, and potently promoted dendritic cell maturation. We applied the new formulation to prepare a prophylactic vaccine for SARS-CoV-2, and observed potent humoral and cellular immune responses from the vaccine in both murine models and non-human primates. More importantly, the vaccine demonstrated a benign safety profile in non-human primates, with limited side effects after repeated treatment with high dosages of LPP/mRNA. Taken together, the inoculation site-retained vaccine formulation serves as a promising vehicle for mRNA vaccines and therapeutic agents.


Asunto(s)
COVID-19 , Vacunas de ARNm , Humanos , Animales , Ratones , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Presentación de Antígeno , ARN Mensajero , Primates , Anticuerpos Antivirales , Anticuerpos Neutralizantes
16.
MedComm (2020) ; 5(6): e615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881676

RESUMEN

Spike-protein-based pseudotyped viruses were used to evaluate vaccines during the COVID-19 pandemic. However, they cannot be used to evaluate the envelope (E), membrane (M), and nucleocapsid (N) proteins. The first generation of virus-like particle (VLP) pseudotyped viruses contains these four structural proteins, but their titers for wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are relatively low, even lower for the omicron variant, rendering them unsuitable for neutralizing antibody detection. By optimizing the spike glycoprotein signal peptide, substituting the complexed M and E proteins with SARS-COV-1, optimizing the N protein with specific mutations (P199L, S202R, and R203M), and truncating the packaging signal, PS9, we increased the titer of the wild-type VLP pseudotyped virus over 100-fold, and successfully packaged the omicron VLP pseudotyped virus. The SARS-CoV-2 VLP pseudotyped viruses maintained stable titers, even through 10 freeze-thaw cycles. The key neutralization assay parameters were optimized, including cell type, cell number, and viral inoculum. The assay demonstrated minimal variation in both intra- and interassay results, at 11.5% and 11.1%, respectively. The correlation between the VLP pseudotyped virus and the authentic virus was strong (r = 0.9). Suitable for high-throughput detection of various mutant strains in clinical serum. In summary, we have developed a reliable neutralization assay for SARS-CoV-2 based on VLP pseudotyped virus.

17.
Gut Microbes ; 16(1): 2334970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38563680

RESUMEN

Gastrointestinal (GI) infection is evidenced with involvement in COVID-19 pathogenesis caused by SARS-CoV-2. However, the correlation between GI microbiota and the distinct pathogenicity of SARS-CoV-2 Proto and its emerging variants remains unclear. In this study, we aimed to determine if GI microbiota impacted COVID-19 pathogenesis and if the effect varied between SARS-CoV-2 Proto and its variants. We performed an integrative analysis of histopathology, microbiomics, and transcriptomics on the GI tract fragments from rhesus monkeys infected with SARS-CoV-2 proto or its variants. Based on the degree of pathological damage and microbiota profile in the GI tract, five of SARS-CoV-2 strains were classified into two distinct clusters, namely, the clusters of Alpha, Beta and Delta (ABD), and Proto and Omicron (PO). Notably, the abundance of potentially pathogenic microorganisms increased in ABD but not in the PO-infected rhesus monkeys. Specifically, the high abundance of UCG-002, UCG-005, and Treponema in ABD virus-infected animals positively correlated with interleukin, integrins, and antiviral genes. Overall, this study revealed that infection-induced alteration of GI microbiota and metabolites could increase the systemic burdens of inflammation or pathological injury in infected animals, especially in those infected with ABD viruses. Distinct GI microbiota and metabolite profiles may be responsible for the differential pathological phenotypes of PO and ABD virus-infected animals. These findings improve our understanding the roles of the GI microbiota in SARS-CoV-2 infection and provide important information for the precise prevention, control, and treatment of COVID-19.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , SARS-CoV-2 , Virulencia , Macaca mulatta
18.
MedComm (2020) ; 5(5): e539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38680520

RESUMEN

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

19.
Cytotherapy ; 15(4): 467-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23403361

RESUMEN

BACKGROUND AIMS: The use of adipose mesenchymal stromal cells (ASCs) in cellular and genic therapy has attracted considerable attention as a possible treatment for neurodegenerative disorders, including Parkinson disease. However, the effects of gene therapy combined with intracerebral cell transplantation have not been well defined. Recent studies have demonstrated the respective roles of LIM homeobox transcription factor 1, alpha (LMX1A) and Neurturin (NTN) in the commitment of embryonic stem cells (ESCs) to a midbrain dopaminergic neuronal fate and the commitment of mesenchymal stromal cells to cells supporting the nutrition and protection of neurons. METHODS: We investigated a novel in vitro neuronal differentiation strategy with the use of LMX1A and Neurturin. We were able to elicit a neural phenotype regarding cell morphology, specific gene/protein expression and physiological function. Neuronal-primed ASCs derived from rhesus monkey (rASCs) combined with adenovirus containing NTN and tyrosine hydroxylase (TH) (Ad-NTN-TH) were implanted into the striatum and substantia nigra of methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned hemi-parkinsonian rhesus monkeys. Monkeys were monitored with the use of behavioral tests and health measures until the fourth month after implantation. RESULTS: The differentiated cells transcribed and expressed a variety of dopaminergic neuron-specific genes involved in the SHH/LMX1A pathway. Single-photon emission computed tomography analysis and postmortem analysis revealed that the grafting of rASCs combined with Ad-NTN-TH had neuroprotective effects compared with Ad-NTN-TH or rASCs alone. Behavioral measures demonstrated autograft survival and symptom amelioration. CONCLUSIONS: These findings may lead to cellular sources for autologous transplantation of Parkinson disease. Combined transplantation of Ad-NTN-TH and induced rASCs expressing LMX1A and NTN may be a better therapy candidate for the treatment of Parkinson disease.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Terapia Genética , Intoxicación por MPTP/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Neurogénesis , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Adipocitos/citología , Tejido Adiposo/citología , Animales , Conducta Animal , Diferenciación Celular , Femenino , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Macaca mulatta , Masculino , Neurturina/genética , Neurturina/metabolismo , Osteoblastos/citología , Distribución Aleatoria , Sustancia Negra/citología , Sustancia Negra/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
20.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38006013

RESUMEN

Of all of the components in SARS-CoV-2 inactivated vaccines, nucleocapsid protein (N) is the most abundant and highly conserved protein. However, the function of N in these vaccines, especially its influence on the targeted spike protein's response, remains unknown. In this study, the immunization of mice with the N protein alone was shown to reduce the viral load, alleviating pulmonary pathological lesions after challenge with the SARS-CoV-2 virus. In addition, co-immunization and pre-immunization with N were found to induce higher S-specific antibody titers rather than compromise them. Remarkably, the same trend was also observed when N was administered as the booster dose after whole inactivated virus vaccination. N-specific IFN-γ-secreting T cell response was detected in all groups and exhibited a certain relationship with S-specific IgG antibody improvements. Together, these data indicate that N has an independent role in vaccine-induced protection and improves the S-specific antibody response to inactivated vaccines, revealing that an interplay mechanism may exist in the immune responses to complex virus components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA