RESUMEN
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Reprogramación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Endotelio/citología , Femenino , Trasplante de Células Madre Hematopoyéticas , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Regulador Transcripcional ERG/metabolismoRESUMEN
Burst-forming unit erythroid progenitors (BFU-Es) are so named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of "bursts" of smaller erythroid colonies derived from the later colony-forming unit erythroid progenitor erythropoietin (Epo)-dependent progenitors. "Early" BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do "late" BFU-Es forming small colonies, but the mechanism underlying this heterogeneity remains unknown. We show that the type III transforming growth factor ß (TGF-ß) receptor (TßRIII) is a marker that distinguishes early and late BFU-Es. Transient elevation of TßRIII expression promotes TGF-ß signaling during the early BFU-E to late BFU-E transition. Blocking TGF-ß signaling using a receptor kinase inhibitor increases early BFU-E cell self-renewal and total erythroblast production, suggesting the usefulness of this type of drug in treating Epo-unresponsive anemias.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Eritrocitos/metabolismo , Células Precursoras Eritroides/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Anemia/metabolismo , Anemia/terapia , Animales , Eritrocitos/citología , Células Precursoras Eritroides/citología , Eritropoyetina/metabolismo , Humanos , RatonesRESUMEN
Hematopoietic and vascular development share many common features, including cell surface markers and sites of origin. Recent lineage-tracing studies have established that definitive hematopoietic stem and progenitor cells arise from vascular endothelial-cadherin(+) hemogenic endothelial cells of the aorta-gonad-mesonephros region, but the genetic programs underlying the specification of hemogenic endothelial cells remain poorly defined. Here, we discovered that Notch induction enhances hematopoietic potential and promotes the specification of hemogenic endothelium in differentiating cultures of mouse embryonic stem cells, and we identified Foxc2 as a highly upregulated transcript in the hemogenic endothelial population. Studies in zebrafish and mouse embryos revealed that Foxc2 and its orthologs are required for the proper development of definitive hematopoiesis and function downstream of Notch signaling in the hemogenic endothelium. These data establish a pathway linking Notch signaling to Foxc2 in hemogenic endothelial cells to promote definitive hematopoiesis.
Asunto(s)
Células Madre Embrionarias/citología , Endotelio Vascular/citología , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Receptor Notch1/metabolismo , Animales , Apoptosis , Western Blotting , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Endotelio Vascular/metabolismo , Factores de Transcripción Forkhead/genética , Células Madre Hematopoyéticas/metabolismo , Ratones , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismoRESUMEN
Evidence concerning the ability of genetic risk factors to moderate the effects of environments has continued to accumulate over the last decade or so. For the behavioral sciences, this means that genetic risk factors might interact with environmental triggers to influence various human outcomes, including antisocial and aggressive behaviors. The current study seeks to further expand this line of inquiry by examining data drawn from the National Youth Survey Family Study. More specifically, we examined whether a polymorphism in the promoter region of the MAOA gene might condition the influence of exposure to deviant peer groups in the prediction of criminogenic behavior. Our findings offer some mixed evidence that genotype might condition the influence of delinquent peer affiliation on antisocial behavior during the course of human development.
Asunto(s)
Conducta Criminal , Interacción Gen-Ambiente , Monoaminooxidasa/genética , Influencia de los Compañeros , Adolescente , Adulto , Agresión , Alelos , Niño , Genotipo , Humanos , Estudios Longitudinales , Masculino , Grupo Paritario , Polimorfismo Genético , Estudios Prospectivos , Adulto JovenRESUMEN
During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patterning of hemogenic endothelium, we assessed the effect of altered Hh signaling in differentiating mouse ES cells, cultured mouse embryos, and developing zebrafish embryos. In differentiating mouse ES cells and mouse yolk sac cultures, addition of Indian Hh ligand increased hematopoietic progenitors, whereas chemical inhibition of Hh signaling reduced hematopoietic progenitors without affecting primitive streak mesoderm formation. In the setting of Hh inhibition, induction of either Notch signaling or overexpression of Stem cell leukemia (Scl)/T-cell acute lymphocytic leukemia protein 1 rescued hemogenic vascular-endothelial cadherin(+) cells and hematopoietic progenitor formation. Together, our results reveal that Scl overexpression is sufficient to rescue the developmental defects caused by blocking the Hh and Notch pathways, and inform our understanding of the embryonic endothelial-to-hematopoietic transition.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Endotelio/fisiología , Proteínas Hedgehog/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Leucemia Linfocítica T Aguda , Pez CebraRESUMEN
Among hematologic neoplasms, chronic myeloid leukemia (CML) is exquisitely sensitive to graft-versus-leukemia (GVL) because patients relapsing after allogeneic hematopoietic stem-cell transplantation (alloHSCT) can be cured by donor leukocyte infusion (DLI); however, the cellular mechanisms and strategies to separate GVL from GVHD are unclear. We used a BCR-ABL1 transduction/transplantation mouse model to study the mechanisms of DLI in MHC-matched, minor histocompatibility antigen-mismatched allogeneic chimeras with CML-like leukemia, in which DLI can be administered at the time of transplantation (early) or after recovery of hematopoiesis (delayed). After early DLI, CML-like leukemia cannot be transferred into immunocompetent secondary recipients as soon as 4 days after primary transplantation, demonstrating that cotransplantation of T lymphocytes blocks the engraftment of BCR-ABL1-transduced stem cells. In contrast, in allogeneic chimeras with established CML-like leukemia, combined treatment with delayed DLI and the kinase inhibitor imatinib eradicates leukemia with minimal GVHD. The GVL effect is directed against minor histocompatibility antigens shared by normal and leukemic stem cells, and is mediated predominantly by CD8+ T cells, with minor contributions from CD5- splenocytes, including natural killer cells. These results define a physiologic model of adoptive immunotherapy of CML that will be useful for investigating the cellular and molecular mechanisms of GVL.
Asunto(s)
Trasplante de Médula Ósea , Modelos Animales de Enfermedad , Efecto Injerto vs Leucemia/inmunología , Inmunoterapia Adoptiva , Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Transfusión de Leucocitos , Animales , Southern Blotting , ADN/genética , Proteínas de Unión al ADN/fisiología , Femenino , Citometría de Flujo , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Enfermedad Injerto contra Huésped/inmunología , Técnicas In Vitro , Leucemia Mielógena Crónica BCR-ABL Positiva/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Tasa de Supervivencia , Linfocitos T/inmunología , Donantes de Tejidos , Trasplante HomólogoRESUMEN
Immunodeficient mice reconstituted with a human immune system (HIS mice) give rise to human T cells, which make them an attractive system to study human immune responses to tumors. However, such HIS mice typically exhibit sub-optimal responses to immune challenges as well as fail to develop antigen-specific B or T cell memory. Here we report HIS mice mediate spontaneous regression of human B cell lymphoma Raji. Tumor regression was dependent on CD4+ and CD8+ T cell responses and resulted in T cell memory. The T cell memory elicited was mainly Raji-specific, however some level of cross-protection was also elicited to a related B cell lymphoma cell line Ramos. Single-cell RNAseq analysis indicated activation of CD8+ T cells in regressing Raji tumors as well as clonal expansion of specific T cell receptors (TCRs). Cloning of TCRs from Raji-infiltrating T cells into a Jurkat reporter cell line showed reactivity specific for Raji tumor cells. Overall, we report a platform for studying in vivo human T cell tumor immunity by highlighting spontaneous Raji tumor regression, clonal TCR expansion, and T cell memory in HIS mice.
Asunto(s)
Linfocitos T CD8-positivos , Linfoma de Células B , Humanos , Ratones , Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Células Jurkat , Linfoma de Células B/metabolismoRESUMEN
Efficacy of immune checkpoint inhibitors in cancers can be limited by CD8 T cell dysfunction or HLA-I down-regulation. Tumor control mechanisms independent of CD8/HLA-I axis would overcome these limitations. Here, we report potent CD4 T cell-mediated tumor regression and memory responses in humanized immune system (HIS) mice implanted with HT-29 colorectal tumors. The regressing tumors showed increased CD4 cytotoxic T lymphocyte (CTL) infiltration and enhanced tumor HLA-II expression compared to progressing tumors. The intratumoral CD4 T cell subset associated with tumor regression expressed multiple cytotoxic markers and exhibited clonal expansion. Notably, tumor control was abrogated by depletion of CD4 but not CD8 T cells. CD4 T cells derived from tumor-regressing mice exhibited HLA-II-dependent and tumor-specific killing ex vivo. Taken together, our study demonstrates a critical role of human CD4 CTLs in mediating tumor clearance independent of CD8 T cells and provides a platform to study human anti-tumor immunity in vivo.
Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Humanos , Ratones , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Neoplasias/metabolismoRESUMEN
Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.
Asunto(s)
Antígenos Ly/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Genes Reporteros , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/genética , Transcriptoma , Animales , Antígenos Ly/metabolismo , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas de la Membrana/metabolismo , Ratones , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula IndividualRESUMEN
Although numerous public closed-circuit television (CCTV) initiatives have been implemented at varying levels in Taiwan's cities and counties, systematic evaluations of these crime reduction efforts have been largely overlooked. To address this void, a quasi-experimental evaluation research project was designed to assess the effect of police-monitored CCTV on crime reduction in Taipei City for a period of 54 months, including data for both before and after camera installation dates. A total of 40 viewsheds within a 100-m (328 feet) radius were selected as research sites to observe variations in four types of crime incidents that became known to police during the January 2008 to June 2012 period. While crime incidents occurring in both the target and control sites were reduced in frequency after CCTV installation, results derived from time-series analysis indicated that the monitoring had no significant effect on the reduction of property crime incidents with the sole exception of robbery. With respect to the effects of comparing target and control sites, the average Crime Reduction Quotient (CRQ) was 0.36, suggesting that CCTV has an overall marginal yet noteworthy influence. Viewed broadly, however, the police-installed CCTV system in Taipei City did not appear to be as efficient as one would expect. Conversely, cameras installed in some observation sites proved to be significantly more effective than cameras in other sites. As a recommendation, future researchers should identify how particular micro-level attributes may lead to CCTV cameras working more effectively, thereby optimizing location choices where monitoring will prove to be most productive.
Asunto(s)
Crimen/prevención & control , Policia , Medidas de Seguridad , Control Social Formal/métodos , Televisión , Crimen/estadística & datos numéricos , Humanos , TaiwánRESUMEN
Hematopoietic stem cell (HSC) transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs) could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.
Asunto(s)
Inmunidad Adaptativa/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Autorrenovación de las Células/genética , Redes Reguladoras de Genes/genética , Hematopoyesis/genética , Hematopoyesis/inmunología , Células Madre Hematopoyéticas/inmunología , Proteínas de Homeodominio/inmunología , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Ratones , Receptores Notch/genética , Receptores Notch/inmunología , Análisis de la Célula Individual , Factores de Transcripción/inmunologíaRESUMEN
We previously discovered a hamster monoclonal antibody, TAB4, against mouse PSGL-1/CD162 that can induce death of activated T cells. Here, we further investigated the potential of TAB4 in treating two murine models of T cell-mediated diseases. The results showed that administration of TAB4 suppressed incidence and severity of both GVHD and type I diabetes. Analyses of apoptotic T cells ex vivo shortly after antibody injection revealed a higher percentage of apoptosis among activated T cells in the TAB4-treated group than in the control group. Furthermore, restoration of functional donor T cells was observed in TAB4-treated mice. As TAB4 does not affect the binding of P-selectin to activated T cells, our data suggest that its long-lasting therapeutic effect on inhibiting disease progression is attained by specifically inducing apoptosis of activated T cells. These data hence extend our previous finding of the novel property of PSGL-1 and strongly indicate that the PSGL-1-specific apoptosis-inducing antibody is a new therapeutic agent possessing a great potential for controlling GVHD and other T cell-mediated autoimmune diseases.