Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902202

RESUMEN

Δ12-fatty acid dehydrogenase (FAD2) is the essential enzyme responsible for catalyzing the formation of linoleic acid from oleic acid. CRISPR/Cas9 gene editing technology has been an essential tool for molecular breeding in soybeans. To evaluate the most suitable type of gene editing in soybean fatty acid synthesis metabolism, this study selected five crucial enzyme genes of the soybean FAD2 gene family-GmFAD2-1A, GmFAD2-1B, GmFAD2-2A, GmFAD2-2B, and GmFAD2-2C-and created a CRISPR/Cas9-mediated single gene editing vector system. The results of Sanger sequencing showed that 72 transformed plants positive for T1 generation were obtained using Agrobacterium-mediated transformation, of which 43 were correctly edited plants, with the highest editing efficiency of 88% for GmFAD2-2A. The phenotypic analysis revealed that the oleic acid content of the progeny of GmFAD2-1A gene-edited plants had a higher increase of 91.49% when compared to the control JN18, and the rest of the gene-edited plants in order were GmFAD2-2A, GmFAD2-1B, GmFAD2-2C, and GmFAD2-2B. The analysis of gene editing type has indicated that base deletions greater than 2bp were the predominant editing type in all editing events. This study provides ideas for the optimization of CRISPR/Cas9 gene editing technology and the development of new tools for precise base editing in the future.


Asunto(s)
Ácido Graso Desaturasas , Edición Génica , Glycine max , Plantas Modificadas Genéticamente , Sistemas CRISPR-Cas , Ácido Graso Desaturasas/genética , Ácidos Grasos/metabolismo , Edición Génica/métodos , Ácido Oléico/metabolismo , Plantas Modificadas Genéticamente/genética , Glycine max/genética
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769078

RESUMEN

AP3 has been studied and is reported to affect structural changes in floral organs in various plants. However, the function of the soybean AP3 genes in flower development is unknown. Here, the full-length cDNA sequence of GmAP3 was obtained by RACE and it was verified that it belongs to the MADS-box subfamily by a bioinformatics analysis. The expression of GmAP3 is closely related to the expression of essential enzyme genes related to flower development. Yeast two-hybrid assays demonstrated that GmAP3 interacts with AP1 to determine the identity of flower organ development. A follow-up analysis showed that overexpression of the GmAP3 gene advanced flowering time and resulted in changes in floral organ morphology. The average flowering time of overexpressed soybean and tobacco plants was 6-8 days earlier than that of wild-type plants, and the average flowering time of gene-edited soybean and tobacco plants was 6-11 days later than that of wild-type plants. In conclusion, GmAP3 may directly or indirectly affect the flower development of soybean. The results of this study lay the foundation for further research on the biological functions of MADS transcriptional factors in soybeans.


Asunto(s)
Glycine max , Proteínas de Dominio MADS , Glycine max/metabolismo , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/metabolismo , Factores de Transcripción/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
3.
J Agric Food Chem ; 71(25): 9815-9825, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37309987

RESUMEN

Soybean [Glycine max (Linn.) Merr.] is an important oil crop. Long noncoding RNAs (lncRNAs) play a variety of functions in plants. However, their function in the soybean oil synthesis pathway is yet to be uncovered. Here, the lncRNA43234 gene related to soybean oil synthesis was screened, and the full-length cDNA sequence of the lncRNA was obtained using rapid amplification of cDNA ends. Overexpression of lncRNA43234 increased the content of crude protein in seeds, decreased the content of oleic acid, and affected the content of alanine and arginine in free amino acids. RNA interference of the lncRNA43234 gene decreased the crude protein content in seeds. Quantitative real-time polymerase chain reaction analysis revealed that lncRNA43234 influenced the expression of XM_014775786.1 associated with phosphatidylinositol metabolism by acting as a decoy for miRNA10420, thereby affecting the content of soybean oil. Our results provide insights into how lncRNA-mediated competing endogenous RNA regulatory networks are involved in soybean oil synthesis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Glycine max/química , Aceite de Soja/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ADN Complementario/análisis , Ácido Oléico/metabolismo , Semillas/química , MicroARNs/metabolismo , Redes Reguladoras de Genes
4.
Plants (Basel) ; 12(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050104

RESUMEN

Following recent developments and refinement, CRISPR-Cas9 gene-editing technology has become increasingly mature and is being widely used for crop improvement. The application of CRISPR/Cas9 enables the generation of transgene-free genome-edited plants in a short period and has the advantages of simplicity, high efficiency, high specificity, and low production costs, which greatly facilitate the study of gene functions. In plant molecular breeding, the gene-editing efficiency of the CRISPR-Cas9 system has proven to be a key step in influencing the effectiveness of molecular breeding, with improvements in gene-editing efficiency recently becoming a focus of reported scientific research. This review details strategies and methods for improving the efficiency of CRISPR/Cas9 gene editing in plant molecular breeding, including Cas9 variant enzyme engineering, the effect of multiple promoter driven Cas9, and gRNA efficient optimization and expression strategies. It also briefly introduces the optimization strategies of the CRISPR/Cas12a system and the application of BE and PE precision editing. These strategies are beneficial for the further development and optimization of gene editing systems in the field of plant molecular breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA