Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nature ; 609(7928): 695-700, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131038

RESUMEN

Electrostriction is a property of dielectric materials whereby an applied electric field induces a mechanical deformation proportional to the square of that field. The magnitude of the effect is usually minuscule (<10-19 m2 V-2 for simple oxides). However, symmetry-breaking phenomena at the interfaces can offer an efficient strategy for the design of new properties1,2. Here we report an engineered electrostrictive effect via the epitaxial deposition of alternating layers of Gd2O3-doped CeO2 and Er2O3-stabilized δ-Bi2O3 with atomically controlled interfaces on NdGaO3 substrates. The value of the electrostriction coefficient achieved is 2.38 × 10-14 m2 V-2, exceeding the best known relaxor ferroelectrics by three orders of magnitude. Our theoretical calculations indicate that this greatly enhanced electrostriction arises from coherent strain imparted by interfacial lattice discontinuity. These artificial heterostructures open a new avenue for the design and manipulation of electrostrictive materials and devices for nano/micro actuation and cutting-edge sensors.


Asunto(s)
Óxidos , Óxidos/química
2.
J Synchrotron Radiat ; 31(Pt 3): 456-463, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38592971

RESUMEN

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.

3.
J Am Chem Soc ; 145(34): 18904-18911, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37602827

RESUMEN

This work reports that the octahedral hydrated Al3+ and Mg2+ ions operate within electrolytic cells as kosmotropic (long-range order-making) "ice makers" of supercooled water (SCW). 10-5 M solutions of hydrated Al3+ and Mg2+ ions each trigger, near the cathode (-20 ± 5 V), electro-freezing of SCW at -4 °C. The hydrated Al3+ ions do so with 100% efficiency, whereas the Mg2+ ions induce icing with 40% efficiency. In contrast, hydrated Na+ ions, under the same experimental conditions, do not induce icing differently than pure water. As such, our study shows that the role played by Al3+ and Mg2+ ions in water electro-freezing is impacted by two synchronous effects: (1) a geometric effect due to the octahedral packing of the coordinated water molecules around the metallic ions, and (2) the degree of polarization which these two ions induce and thereby acidify the coordinated water molecules, which in turn imparts them with an ice-like structure. Long-duration molecular dynamics (MD) simulations of the Al3+ and Mg2+ indeed reveal the formation of "ice-like" hexagons in the vicinity of these ions. Furthermore, the MD shows that these hexagons and the electric fields of the coordinate water molecules give rise to ultimate icing. As such, the MD simulations provide a rational explanation for the order-making properties of these ions during electro-freezing.

4.
J Synchrotron Radiat ; 30(Pt 4): 758-765, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233734

RESUMEN

Electro-chemo-mechanical (ECM) coupling refers to mechanical deformation due to electrochemically driven compositional change in a solid. An ECM actuator producing micrometre-size displacements and long-term stability at room temperature was recently reported, comprising a 20 mol% Gd-doped ceria (20GDC), a solid electrolyte membrane, placed between two working bodies made of TiOx/20GDC (Ti-GDC) nanocomposites with Ti concentration of 38 mol%. The volumetric changes originating from oxidation or reduction in the local TiOx units are hypothesized to be the origin of mechanical deformation in the ECM actuator. Studying the Ti concentration-dependent structural changes in the Ti-GDC nanocomposites is therefore required for (i) understanding the mechanism of dimensional changes in the ECM actuator and (ii) maximizing the ECM response. Here, the systematic investigation of the local structure of the Ti and Ce ions in Ti-GDC over a broad range of Ti concentrations using synchrotron X-ray absorption spectroscopy and X-ray diffraction is reported. The main finding is that, depending on the Ti concentration, Ti atoms either form a cerium titanate or segregate into a TiO2 anatase-like phase. The transition region between these two regimes with Ti(IV) concentration between 19% and 57% contained strongly disordered TiOx units dispersed in 20GDC containing Ce(III) and Ce(IV) and hence rich with oxygen vacancies. As a result, this transition region is proposed to be the most advantageous for developing ECM-active materials.


Asunto(s)
Nanocompuestos , Oxidación-Reducción , Nanocompuestos/química , Difracción de Rayos X , Catálisis , Electrólitos
5.
Acc Chem Res ; 55(10): 1383-1394, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35504292

RESUMEN

ConspectusThe ability to control the icing temperature of supercooled water (SCW) is of supreme importance in subfields of pure and applied sciences. The ice freezing of SCW can be influenced heterogeneously by electric effects, a process known as electrofreezing. This effect was first discovered during the 19th century; however, its mechanism is still under debate. In this Account we demonstrate, by capitalizing on the properties of polar crystals, that heterogeneous electrofreezing of SCW is a chemical process influenced by an electric field and specific ions. Polar crystals possess a net dipole moment. In addition, they are pyroelectric, displaying short-lived surface charges at their hemihedral faces at the two poles of the crystals as a result of temperature changes. Accordingly, during cooling or heating, an electric field is created, which is negated by the attraction of compensating charges from the environment. This process had an impact in the following experiments. The icing temperatures of SCW within crevices of polar crystals are higher in comparison to icing temperatures within crevices of nonpolar analogs. The role played by the electric effect was extricated from other effects by the performance of icing experiments on the surfaces of pyroelectric quasi-amorphous SrTiO3. During those studies it was found that on positively charged surfaces the icing temperature of SCW is elevated, whereas on negatively charged surfaces it is reduced. Following investigations discovered that the icing temperature of SCW is impacted by an ionic current created within a hydrated layer on top of hydrophilic faces residing parallel to the polar axes of the crystals. In the absence of such current on analogous hydrophobic surfaces, the pyroelectric effect does not influence the icing temperature of SCW. Those results implied that electrofreezing of SCW is a process influenced by specific compensating ions attracted by the pyroelectric field from the aqueous solution. When freezing experiments are performed in an open atmosphere, bicarbonate and hydronium ions, created by the dissolution of atmospheric CO2 in water, influence the icing temperature. The bicarbonate ions, when attracted by positively charged pyroelectric surfaces, elevate the icing temperature, whereas their counterparts, hydronium ions, when attracted by the negatively charged surfaces reduce the icing temperature. Molecular dynamic simulations suggested that bicarbonate ions, concentrated within the near positively charged interfacial layer, self-assemble with water molecules to create stabilized slightly distorted "ice-like" hexagonal assemblies which mimic the hexagons of the crystals of ice. This occurs by replacing, within those ice-like hexagons, two hydrogen bonds of water by C-O bonds of the HCO3- ion. On the basis of these simulations, it was predicted and experimentally confirmed that other trigonal planar ions such as NO3-, guanidinium+, and the quasi-hexagonal biguanidinium+ ion elevate the icing temperature. These ions were coined as "ice makers". Other ions including hydronium, Cl-, and SO4-2 interfere with the formation of ice-like assemblies and operate as "ice breakers". The higher icing temperatures induced within the crevices of the hydrophobic polar crystals in comparison to the nonpolar analogs can be attributed to the proton ordering of the water molecules. In contrast, the icing temperatures on related hydrophilic surfaces are influenced both by compensating charges and by proton ordering.

6.
Phys Chem Chem Phys ; 25(44): 30563-30571, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37929817

RESUMEN

Raman spectroscopy is applied for non-destructive characterization of strain in crystalline thin films. The analysis makes use of the numerical value of the mode Grüneisen parameter γ, which relates the fractional change in the frequency of a Raman-active vibrational mode and the strain-induced fractional change in the unit cell volume. When in-plane, compressive biaxial strain in aliovalent doped CeO2-films is relieved by partial substrate removal, the films exhibit values of γ for the F2g vibrational mode which are ∼30% of the literature values for bulk ceramics under isostatic stress. This discrepancy has been attributed to a negative contribution from the anelastic (time-dependent) mechanical properties of aliovalent-doped ceria. Here we propose a way to "separate" anelastic and elastic contributions to the F2g mode Grüneisen parameter. Mechanically elastic yttria (Y2O3) films on Ti/SiO2/Si substrate serve as "control". The values of γ calculated from the change in frequency of the ∼375 cm-1 F2g Raman-active mode are close to the literature values for bulk yttria under isostatic stress. This work should serve to provide a protocol for characterization of selective sensitivity to different strain components of doped ceria thin films.

7.
Sensors (Basel) ; 22(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36146391

RESUMEN

A protocol for successfully depositing [001] textured, 2−3 µm thick films of Al0.75Sc0.25N, is proposed. The procedure relies on the fact that sputtered Ti is [001]-textured α-phase (hcp). Diffusion of nitrogen ions into the α-Ti film during reactive sputtering of Al0.75,Sc0.25N likely forms a [111]-oriented TiN intermediate layer. The lattice mismatch of this very thin film with Al0.75Sc0.25N is ~3.7%, providing excellent conditions for epitaxial growth. In contrast to earlier reports, the Al0.75Sc0.25N films prepared in the current study are Al-terminated. Low growth stress (<100 MPa) allows films up to 3 µm thick to be deposited without loss of orientation or decrease in piezoelectric coefficient. An advantage of the proposed technique is that it is compatible with a variety of substrates commonly used for actuators or MEMS, as demonstrated here for both Si wafers and D263 borosilicate glass. Additionally, thicker films can potentially lead to increased piezoelectric stress/strain by supporting application of higher voltage, but without increase in the magnitude of the electric field.

8.
Angew Chem Int Ed Engl ; 61(49): e202213955, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36200991

RESUMEN

Design of pyroelectric crystals decoupled from piezoelectricity is not only a topic of scientific curiosity but also demonstrates effects in principle that have the potential to be technologically advantageous. Here we report a new method for the design of such materials. Thus, the co-doping of centrosymmetric crystals with tailor-made guest molecules, as illustrated by the doping of α-glycine with different amino acids (Threonine, Alanine and Serine). The polarization of those crystals displays two distinct contributions, one arising from the difference in dipole moments between guest and host and the other from the displacement of host molecules from their symmetry-related positions. These contributions exhibit different temperature dependences and response to mechanical deformation. Thus, providing a proof of concept for the ability to design pyroelectric materials with reduced piezoelectric coefficient (d22 ) to a minimal value, below the resolution limit of the method (<0.005 pm/V).


Asunto(s)
Aminoácidos , Glicina , Glicina/química , Cristalización , Aminoácidos/química , Alanina/química
9.
J Synchrotron Radiat ; 28(Pt 5): 1511-1517, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475298

RESUMEN

In functional materials, the local environment around active species that may contain just a few nearest-neighboring atomic shells often changes in response to external conditions. Strong disorder in the local environment poses a challenge to commonly used extended X-ray absorption fine structure (EXAFS) analysis. Furthermore, the dilute concentrations of absorbing atoms, small sample size and the constraints of the experimental setup often limit the utility of EXAFS for structural analysis. X-ray absorption near-edge structure (XANES) has been established as a good alternative method to provide local electronic and geometric information of materials. The pre-edge region in the XANES spectra of metal compounds is a useful but relatively under-utilized resource of information of the chemical composition and structural disorder in nano-materials. This study explores two examples of materials in which the transition metal environment is either relatively symmetric or strongly asymmetric. In the former case, EXAFS results agree with those obtained from the pre-edge XANES analysis, whereas in the latter case they are in a seeming contradiction. The two observations are reconciled by revisiting the limitations of EXAFS in the case of a strong, asymmetric bond length disorder, expected for mixed-valence oxides, and emphasize the utility of the pre-edge XANES analysis for detecting local heterogeneities in structural and compositional motifs.

10.
Chem Soc Rev ; 49(2): 554-592, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31872840

RESUMEN

Ceria and its solid solutions play a vital role in several industrial processes and devices. These include solar energy-to-fuel conversion, solid oxide fuel and electrolyzer cells, memristors, chemical looping combustion, automotive 3-way catalysts, catalytic surface coatings, supercapacitors and recently, electrostrictive devices. An attractive feature of ceria is the possibility of tuning defect-chemistry to increase the effectiveness of the materials in application areas. Years of study have revealed many features of the long-range, macroscopic characteristics of ceria and its derivatives. In this review we focus on an area of ceria defect chemistry which has received comparatively little attention - defect-induced local distortions and short-range associates. These features are non-periodic in nature and hence not readily detected by conventional X-ray powder diffraction. We compile the relevant literature data obtained by thermodynamic analysis, Raman spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Each of these techniques provides insight into material behavior without reliance on long-range periodic symmetry. From thermodynamic analyses, association of defects is inferred. From XAFS, an element-specific probe, local structure around selected atomic species is obtained, whereas from Raman spectroscopy, local symmetry breaking and vibrational changes in bonding patterns is detected. We note that, for undoped ceria and its solid solutions, the relationship between short range order and cation-oxygen-vacancy coordination remains a subject of active debate. Beyond collating the sometimes contradictory data in the literature, we strengthen this review by reporting new spectroscopy results and analysis. We contribute to this debate by introducing additional data and analysis, with the expectation that increasing our fundamental understanding of this relationship will lead to an ability to predict and tailor the defect-chemistry of ceria-based materials for practical applications.

11.
Proc Natl Acad Sci U S A ; 114(28): E5504-E5512, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28588141

RESUMEN

Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material's relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity's hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material's noncentrosymmetry. We note that the material's ferroelectric nature, can, but need not be important in a PV cell at room temperature.

12.
Angew Chem Int Ed Engl ; 59(36): 15570-15574, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32621797

RESUMEN

By performing icing experiments on hydrophilic and hydrophobic surfaces of pyroelectric amino acids and on the x-cut faces of LiTaO3 , we discovered that the effect of electrofreezing of super cooled water is triggered by ions of carbonic acid. During the cooling of the hydrophilic pyroelectric crystals, a continuous water layer is created between the charged hemihedral faces, as confirmed by impedance measurements. As a result, a current of carbonic acid ions, produced by dissolved environmental CO2 , flows through the wetted layer towards the hemihedral faces and elevates the icing temperature. This proposed mechanism is based on the following: (i) on hydrophilic surfaces, water with dissolved CO2 (pH 4) freezes at higher temperatures than pure water of pH 7. (ii) In the absence of the ionic current, achieved by linking the two hemihedral faces of hydrophilic crystals by a conductive paint, water of the two pH levels freeze at the same temperature. (iii) On hydrophobic crystals with similar pyroelectric coefficients, where there is no continuous wetted layer, no electrofreezing effect is observed.

13.
Angew Chem Int Ed Engl ; 59(36): 15575-15579, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627307

RESUMEN

Electrofreezing experiments of super-cooled water (SCW) with different ions, performed directly on the charged hemihedral faces of pyroelectric LiTaO3 and AgI crystals, in the presence and in the absence of pyroelectric charge are reported. It is demonstrated that bicarbonate (HCO3 - ) ions elevate the icing temperature near the positively charged faces. In contrast, the hydronium (H3 O+ ) slightly reduces the icing temperature. Molecular dynamics simulations suggest that the hydrated trigonal planar HCO3 - ions self-assemble with water molecules near the surface of the AgI crystal as clusters of slightly different configuration from those of the ice-like hexagons. These clusters, however, have a tendency to serve as embryonic nuclei for ice crystallization. Consequently, we predicted and experimentally confirmed that the trigonal planar ions of NO3 - and guanidinium (Gdm+ ), at appropriate concentrations, elevate the icing temperature near the positive and negative charged surfaces, respectively. On the other hand, the Cl- and SO4 2- ions of different configurations reduce the icing temperature.

14.
Acc Chem Res ; 51(5): 1238-1248, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29676901

RESUMEN

Crystals are physical arrays delineated by polar surfaces and often contain imperfections of a polar nature. Understanding the structure of such defects on the molecular level is of topical importance since they strongly affect the macroscopic properties of materials. Moreover, polar imperfections in crystals can be created intentionally and specifically designed by doping nonpolar crystals with "tailor-made" additives as dopants, since their incorporation generally takes place in a polar mode. Insertion of dopants also induces a polar deformation of neighboring host molecules, resulting in the creation of polar domains within the crystals. The contribution of the distorted host molecules to the polarity of such domains should be substantial, particularly in crystals composed of molecules with large dipole moments, such as the zwitterionic amino acids, which possess dipole moments as high as ∼14 D. Polar materials are pyroelectric, i.e., they generate surface charge as a result of temperature change. With the application of recent very sensitive instruments for measuring electric currents, coupled with theoretical computations, it has become possible to determine the structure of polar imperfections, including surfaces, at a molecular level. The detection of pyroelectricity requires attachment of electrodes, which might induce various artifacts and modify the surface of the crystal. Therefore, a new method for contactless pyroelectric measurement using X-ray photoelectron spectroscopy was developed and compared to the traditional periodic temperature change technique. Here we describe the molecular-level determination of the structure of imperfections of different natures in molecular crystals and how they affect the macroscopic properties of the crystals, with the following specific examples: (i) Experimental support for the nonclassical crystal growth mechanism as provided by the detection of pyroelectricity from near-surface solvated polar layers present at different faces of nonpolar amino acid crystals. (ii) Enantiomeric disorder in dl-alanine crystals disclosed by detection of anomalously strong pyroelectricity along their nonpolar directions. The presence of such disorder, which is not revealed by accurate diffraction techniques, explains the riddle of their needlelike morphology. (iii) The design of mixed polar crystals of l-asparagine·H2O/l-aspartic acid with controlled degrees of polarity, as determined by pyroelectricity and X-ray diffraction, and their use in mechanistic studies of electrofreezing of supercooled water. (iv) Pyroelectricity coupled with dispersion-corrected density functional theory calculations and molecular dynamics simulations as an analytical method for the molecular-level determination of the structure of polar domains created by doping of α-glycine crystals with different l-amino acids at concentrations below 0.5%. (v) Selective insertion of minute amounts of alcohols within the bulk of α-glycine crystals, elucidating their role as inducers of the metastable ß-glycine polymorph. In conclusion, the various examples demonstrate that although these imperfections are present in minute amounts, they can be detected by the sensitive pyroelectric measurement, and by combining them with theoretical computations one can elucidate their diverse emerging functionalities.


Asunto(s)
Aminoácidos/química , Cristalización , Técnicas Electroquímicas/métodos , Estereoisomerismo , Temperatura , Agua/química
15.
Inorg Chem ; 58(11): 7527-7536, 2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31091085

RESUMEN

Ceria doped with trivalent dopants exhibits nonclassical electrostriction, strong anelasticity, and room-temperature (RT) mechanical creep. These phenomena, unexpected for a ceramic material with a large Young's modulus, have been attributed to the generation of local strain in the vicinity of the host Ce cations due to symmetry-breaking point defects, including oxygen vacancies. However, understanding why strain is generated at the host rather than at the dopant site, as well as predicting these effects as a function of dopant size and concentration, remains a challenge. We have used the evolutionary-algorithm-based reverse Monte Carlo modeling to reconcile the experimental data of extended X-ray absorption fine structure and X-ray diffraction in a combined model structure. By extracting the details of the radial distribution function (RDF) around the host (Ce) and trivalent dopants (Sm or Y), we find that RDF of the first-nearest neighbor (1NN) of host and dopant cations as well as the second-nearest neighbor (2NN) of the dopant are each best modeled with two separate populations corresponding to short and long interatomic distances. This heterogeneity indicates that fluorite symmetry is not preserved locally, especially for the dopant first-and second-NN sites, appearing at surprisingly low doping fractions (5 mol % Sm and 10 mol % Y). Given that Ce rather than dopant sites act as the source of local strain for electrostriction and RT creep, we conclude that the environment around the dopant does not respond to electrical and mechanical excitations, likely because of its similarity to the double fluorite structure which has poor electrostrictive and anelastic properties. The trends we observe in the RDFs around the Ce sites as a function of dopant size and concentration suggest that the response of these sites can be controlled by the extent of doping: Increasing dopant size to increase strain magnitude at the 1NN shell of Ce and decreasing dopant fraction to decrease strain propagation to the 2NN shell of Ce should produce stronger electrostrictive response and RT creep.

16.
Acc Chem Res ; 50(3): 573-576, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28945410

RESUMEN

Materials are central to our way of life and future. Energy and materials as resources are connected, and the obvious connections between them are the energy cost of materials and the materials cost of energy. For both of these, resilience of the materials is critical; thus, a major goal of future chemistry should be to find materials for energy that can last longer, that is, design principles for self-repair in these.

17.
Phys Chem Chem Phys ; 20(28): 19250-19256, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-29989140

RESUMEN

The potential barrier formed at the grain boundaries in Fe-doped SrTiO3 is reported to be one of the main reasons of the exceptionally large grain boundary resistivity of the material. Of particular interest is thus how to accurately quantify the potential barrier height, Ψgb, in such electronic conductors. This study aims to expand the applicability of a linear diffusion model (namely I-V model) to electronic conductors. The I-V model has previously proven its success in accurate determination of Ψgb in popular ionic conductors. By employing 1 mol% Fe-doped SrTiO3 as a model material, the current-voltage characteristics of the grain boundary investigated demonstrate the power law behavior predicted by the I-V model, verifying the applicability of this model. The Ψgb estimated from the I-V model at different temperatures are compared with those from the resistivity ratio of the grain boundary to the bulk. The resistivity ratio has been exclusively used to determine Ψgb in various conductors over several decades and yet has limitations in its accuracy. The Ψgb determined by the I-V model are found to be substantially lower than those from the resistivity ratio; such discrepancy implies that the potential barrier only partially contributes to the high grain boundary resistivity of a lightly doped electron-hole conducting SrTiO3.

18.
Phys Chem Chem Phys ; 20(13): 8719-8723, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29536998

RESUMEN

The extent of the influence of space charge on the electric current through the grain boundary in solid electrolytes can be parameterized by the grain boundary potential, i.e. the height of the potential barrier formed at the grain boundary. Previously the value of this parameter has been estimated exclusively by the ratio of the grain boundary resistivity to the bulk counterpart over several decades. We recently demonstrated that it can be alternatively determined by analyzing the current-voltage characteristic of the grain boundary. Furthermore, we theoretically justified that the conventional method is in fact a subset of the new method, therefore, the latter is a more reliable and comprehensive approach to determine the grain boundary potential. Here, we present the experimental results that verify our theoretical justification. The values of the grain boundary potential determined for 1 mol% Sr-doped LaGaO3 (LSG1) employing both methods are in excellent agreement with one another. Such a consistency has not been reported for other solid electrolytes to date and we provide an explanation for it. Our data also indicate that for the case of LSG1, the Nernst-Einstein relation is preserved at the electric field exceeding 900 kV cm-1.

19.
Phys Chem Chem Phys ; 20(42): 27019-27024, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30328858

RESUMEN

The magnetic properties of undoped, bulk CeO2 are not fully understood. In contrast to nanocrystalline ceria that exhibits paramagnetism attributed to Ce3+ at grain surfaces, bulk ceria is weakly paramagnetic, despite the absence of magnetic ions. In the present work, the magnetic susceptibility of bulk ceria ceramics doped with Lu3+, which has neither spin nor orbital angular momentum, was measured in order to assess the relative contributions of the crystal lattice, residual Ce3+ and oxygen vacancies to the overall bulk magnetization. We observed a magnetic response consisting of two parts: temperature independent (5-300 K) magnetic susceptibility, and Curie-Weiss paramagnetism. The temperature independent susceptibility decreases linearly with Lu content, and becomes diamagnetic at 30 mol% Lu. The Curie-Weiss magnetism visible at low temperatures was identified as resulting from a few ppm of Fe contaminant. However, Fe contamination does not contribute to the temperature independent paramagnetism. No contribution from Ce3+ could be detected. The fact that the magnetization decreases with Lu content, even though the concentration of oxygen vacancies, and the lattice defects associated with them, increases, indicates that neither is coupled to the magnetic field. Weak, temperature-independent paramagnetism in non-metals is usually attributed to a second order, Van Vleck-type magnetization. However, Van Vleck paramagnetism requires that the population of the first excited state be constant within the range of temperatures investigated. We discuss possible modifications of the large band gap electronic structure of undoped ceria which could account for our observations.

20.
Angew Chem Int Ed Engl ; 57(18): 4965-4969, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29405549

RESUMEN

Metastable polymorphs commonly emerge when the formation of the stable analogues is inhibited by using different solvents or auxiliaries. Herein, we report that when glycine is grown in aqueous solutions in the presence of low concentrations of different co-solvents, only alcohols and acetone, unlike water and acetic acid, are selectively incorporated in minute amounts within the bulk of the α-polymorph. These findings demonstrate that although water binds more strongly to the growing face of the crystal, alcohols and acetone are exclusively incorporated, and thus serve as efficient inhibitors of this polymorph, leading to the precipitation of the ß-form. These solvents then create polar domains detectable by pyroelectric measurements and impedance spectroscopy. These results suggest that in the control of crystal polymorphism with co-solvents, one should consider also the different desolvation rates in addition to the energy of binding to the growing faces of the crystal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA