Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 108(7): 818-828, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29384448

RESUMEN

Maize (Zea mays L.) is a highly valuable crop in Argentina, frequently contaminated with the mycotoxins produced by Aspergillus flavus. Biocontrol products formulated with atoxigenic (nontoxic) strains of this fungal species are well known as an effective method to reduce this contamination. In the present study, 83 A. flavus isolates from two maize regions of Argentina were characterized and evaluated for their ability to produce or lack of producing mycotoxins in order to select atoxigenic strains to be used as potential biocontrol agents (BCA). All of the isolates were tested for aflatoxin and cyclopiazonic acid (CPA) production in maize kernels and a liquid culture medium. Genetic diversity of the nonaflatoxigenic isolates was evaluated by analysis of vegetative compatibility groups (VCG) and confirmation of deletions in the aflatoxin biosynthesis cluster. Eight atoxigenic isolates were compared for their ability to reduce aflatoxin and CPA contamination in maize kernels in coinoculation tests. The A. flavus population was composed of 32% aflatoxin and CPA producers and 52% CPA producers, and 16% was determined as atoxigenic. All of the aflatoxin producer isolates also produced CPA. Aflatoxin and CPA production was significantly higher in maize kernels than in liquid medium. The 57 nonaflatoxigenic strains formed six VCG, with AM1 and AM5 being the dominant groups, with a frequency of 58 and 35%, respectively. In coinoculation experiments, all of the atoxigenic strains reduced aflatoxin from 54 to 83% and CPA from 60 to 97%. Members of group AM1 showed a greater aflatoxin reduction than members of AM5 (72 versus 66%) but no differences were detected in CPA production. Here, we described for the first time atoxigenic isolates of A. flavus that show promise to be used as BCA in maize crops in Argentina. This innovating biological control approach should be considered, developed further, and used by the maize industry to preserve the quality properties and food safety of maize kernels in Argentina.


Asunto(s)
Aspergillus flavus/fisiología , Agentes de Control Biológico , Micotoxinas/química , Enfermedades de las Plantas/microbiología , Zea mays/microbiología , Antibiosis , Argentina , Variación Genética , Micotoxinas/metabolismo , Enfermedades de las Plantas/prevención & control
2.
J Agric Food Chem ; 72(40): 22385-22397, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39324627

RESUMEN

Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.


Asunto(s)
Arachis , Bacillus , Bradyrhizobium , Metagenómica , Pseudomonas , Rizosfera , Microbiología del Suelo , Suelo , Arachis/microbiología , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Arachis/genética , Bacillus/genética , Bacillus/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Bradyrhizobium/crecimiento & desarrollo , Bradyrhizobium/fisiología , Pseudomonas/genética , Pseudomonas/fisiología , Pseudomonas/crecimiento & desarrollo , Suelo/química , Producción de Cultivos/métodos , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/enzimología , Bacterias/aislamiento & purificación , Biodiversidad , Fijación del Nitrógeno , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
3.
J Food Sci ; 79(12): M2499-506, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25376651

RESUMEN

The objective in this study was to evaluate the antifungal activity of essential oils from native and commercial aromatic plants grown in Argentina against corn postharvest fungi and to link the essential oil bioactivity with lipid oxidation and morphological changes in fungus cell membrane. Essential oil (EO) of oregano variety Mendocino (OMen), Cordobes (OCor), and Compacto (OCom), mint variety Inglesa (Mi), and Pehaujo (Mp), Suico (Sui); rosemary (Ro), and Aguaribay (Ag) were tested in vitro against 4 corn fungi: A. flavus (CCC116-83 and BXC01), P. oxalicum (083296), and P. minioluteum (BXC03). The minimum fungicidal concentration (MFC) and the minimum inhibitory concentration (MIC) were determined. The chemical profiles of the EOs were analyzed by GC-MS. Lipid oxidation in cell membrane of fungi was determined by hydroperoxides and related with essential oil antifungal activity. The major compounds were Thymol in OCor (18.66%), Omen (12.18%), and OCom (9.44%); menthol in Mi and Mp; verbenone in Sui; dehydroxy-isocalamendiol in Ag; and eucaliptol in Ro. OCor, Omen, and OCom showed the best antifungal activity. No antifungal activity was observed in Ag and Ro EO. The hydroperoxide value depended on the fungi (P < 0.001) and the antimicrobial agent (P < 0.001).Membrane lipids were oxidized by Sui EO in A. flavus BXC01 and A. flavus CCC116-83 (0.021 and 0.027 meqO2 /kg, respectively). The results suggest that the EOs of OCor, OMen, OCom, Mi, Mp, and Sui grown in Argentina can be used as natural alternatives to control fungi that produce mycotoxin in maize.


Asunto(s)
Antifúngicos/farmacología , Aspergillus flavus/efectos de los fármacos , Aceites Volátiles/farmacología , Penicillium/efectos de los fármacos , Aceites de Plantas/farmacología , Zea mays/microbiología , Argentina , Análisis por Conglomerados , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Peróxidos Lipídicos/metabolismo , Mentha/química , Mentha/clasificación , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Micotoxinas/metabolismo , Origanum/química , Origanum/clasificación , Análisis de Componente Principal , Rosmarinus/química , Rosmarinus/clasificación , Timol/farmacología
4.
J Agric Food Chem ; 58(2): 1115-20, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19928992

RESUMEN

The aim of this work was to compare the antiradical activity, total phenol content (TPC), and essential oil composition of Origanum vulgare spp. virens, Origanum x applii, Origanum x majoricum, and O. vulgare spp. vulgare cultivated in Argentina in different localities. The experiment was conducted in the research station of La Consulta (INTA-Mendoza), the research station of Santa Lucia (INTA-San Juan), and Agronomy Faculty of National University of La Pampa, from 2007 to 2008. The composition of the essential oils of oregano populations was independent of cultivation conditions. In total, 39 compounds were identified in essential oils of oregano from Argentina by means of GC-MS. Thymol and trans-sabinene hydrate were the most prominent compounds, followed by gamma-terpinene, terpinen-4-ol, and alpha-terpinene. O. vulgare vulgare is the only Origanum studied which is rich in gamma-terpinene. Among tested oregano, O. x majoricum showed the highest essential oil content, 3.9 mg g(-1) dry matter. The plant extract of O. x majoricum had greater total phenol content values, 19.36 mg/g dry weight, than the rest of oregano studied. To find relationships among TPC, free radical scavenging activity (FRSA), and climate variables, canonical correlations were calculated. The results obtained allow us to conclude that 70% of the TPC and FRSA variability can be explained by the climate variables (R(2) = 0.70; p = 8.3 x 10(-6)), the temperature being the most important climatic variable.


Asunto(s)
Depuradores de Radicales Libres/análisis , Aceites Volátiles/análisis , Origanum/química , Fenoles/análisis , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA