Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Stem Cells ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230167

RESUMEN

Advanced bioinformatics analysis, such as systems biology (SysBio) and artificial intelligence (AI) approaches, including machine learning (ML) and deep learning (DL), is increasingly present in stem cell (SC) research. An approximate timeline on these developments and their global impact is still lacking. We conducted a scoping review on the contribution of SysBio and AI analysis to SC research and therapy development based on literature published in PubMed between 2000 and 2024. We identified an 8-10-fold increase in research output related to all three search terms between 2000 and 2021, with a 10-fold increase in AI-related production since 2010. Use of SysBio and AI still predominates in preclinical basic research with increasing use in clinically oriented translational medicine since 2010. SysBio- and AI-related research was found all over the globe, with SysBio output led by the United States (US, n=1487), United Kingdom (UK, n=1094), Germany (n=355), The Netherlands (n=339), Russia (n=215), and France (n=149), while for AI-related research the US (n=853) and UK (n=258) take a strong lead, followed by Switzerland (n=69), The Netherlands (n=37), and Germany (n=19). The US and UK are most active in SCs publications related to AI/ML and AI/DL. The prominent use of SysBio in ESC research was recently overtaken by prominent use of AI in iPSC and MSC research. This study reveals the global evolution and growing intersection between AI, SysBio, and SC research over the past two decades, with substantial growth in all three fields and exponential increases in AI-related research in the past decade.

2.
Nephrol Dial Transplant ; 33(4): 574-585, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29228352

RESUMEN

Background: Vascular calcification is enhanced in uraemic chronic haemodialysis patients, likely due to the accumulation of midsize uraemic toxins, such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α). Here we have assessed the impact of uraemia on vascular smooth muscle cell (VSMC) calcification and examined the role of IL-6 and TNF-α as possible mediators and, most importantly, its underlying signalling pathway in VSMCs. Methods: VSMCs were incubated with samples of uraemic serum obtained from patients treated with haemodialysis for renal failure in the Permeability Enhancement to Reduce Chronic Inflammation-I clinical trial. The VSMCs were assessed for IL-6 gene regulation and promoter activation in response to uraemic serum and TNF-α with reporter assays and electrophoretic mobility shift assay and for osteoblastic transition, cellular calcification and cell viability upon osteogenic differentiation. Results: Uraemic serum contained higher levels of TNF-α and IL-6 compared with serum from healthy individuals. Exposure of VSMCs to uraemic serum or recombinant TNF-α lead to a strong upregulation of IL-6 mRNA expression and protein secretion, which was mediated by activator protein 1 (AP-1)/c-FOS-pathway signalling. Uraemic serum induced osteoblastic transition and calcification of VSMCs could be strongly attenuated by blocking TNF-α, IL-6 or AP-1/c-FOS signalling, which was accompanied by improved cell viability. Conclusion: These results demonstrate that uraemic serum contains higher levels of uraemic toxins TNF-α and IL-6 and that uraemia promotes vascular calcification through a signalling pathway involving TNF-α, IL-6 and the AP-1/c-FOS cytokine-signalling axis. Thus treatment modalities aiming to reduce systemic TNF-α and IL-6 levels in chronic haemodialysis patients should be evaluated in future clinical trials.


Asunto(s)
Interleucina-6/metabolismo , Músculo Liso Vascular/patología , Osteoblastos/patología , Factor de Necrosis Tumoral alfa/farmacología , Uremia/metabolismo , Calcificación Vascular/patología , Anciano , Diferenciación Celular , Células Cultivadas , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción AP-1/metabolismo , Uremia/patología , Calcificación Vascular/inducido químicamente , Calcificación Vascular/metabolismo
3.
Front Immunol ; 14: 1209464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795100

RESUMEN

Aims: Expanded hemodialysis (HDx) therapy with improved molecular cut-off dialyzers exerts beneficial effects on lowering uremia-associated chronic systemic microinflammation, a driver of endothelial dysfunction and cardiovascular disease (CVD) in hemodialysis (HD) patients with end-stage renal disease (ESRD). However, studies on the underlying molecular mechanisms are still at an early stage. Here, we identify the (endothelial) transcription factor Krüppel-like factor 2 (KLF2) and its associated molecular signalling pathways as key targets and regulators of uremia-induced endothelial micro-inflammation in the HD/ESRD setting, which is crucial for vascular homeostasis and controlling detrimental vascular inflammation. Methods and results: First, we found that human microvascular endothelial cells (HMECs) and other typical endothelial and kidney model cell lines (e.g. HUVECs, HREC, and HEK) exposed to uremic serum from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation II (PERCI-II) crossover clinical trial - comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes - exhibited strongly reduced expression of vasculoprotective KLF2 with HF dialyzers, while dialysis with MCO dialyzers led to the maintenance and restoration of physiological KLF2 levels in HMECs. Mechanistic follow-up revealed that the strong downmodulation of KLF2 in HMECs exposed to uremic serum was mediated by a dominant engagement of detrimental ERK instead of beneficial AKT signalling, with subsequent AP1-/c-FOS binding in the KLF2 promoter region, followed by the detrimental triggering of pleiotropic inflammatory mediators, while the introduction of a KLF2 overexpression plasmid could restore physiological KLF2 levels and downmodulate the detrimental vascular inflammation in a mechanistic rescue approach. Conclusion: Uremia downmodulates vasculoprotective KLF2 in endothelium, leading to detrimental vascular inflammation, while MCO dialysis with the novel improved HDx therapy approach can maintain physiological levels of vasculoprotective KLF2.


Asunto(s)
Fallo Renal Crónico , Uremia , Humanos , Células Endoteliales , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Uremia/terapia , Uremia/complicaciones , Fallo Renal Crónico/terapia , Factores de Transcripción , Inflamación/complicaciones , Factores de Transcripción de Tipo Kruppel/genética
4.
Front Immunol ; 14: 1289744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965310

RESUMEN

Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.


Asunto(s)
Enfermedades Renales , Trombina , Humanos , Aloinjertos , Autoanticuerpos , Células Endoteliales/fisiología , Inmunoglobulina G , Riñón , Monocitos , Receptor PAR-1 , Factor de Transcripción AP-1 , Factor de Necrosis Tumoral alfa/metabolismo
5.
Cells ; 10(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920990

RESUMEN

Thrombin, the ligand of the protease-activated receptor 1 (PAR1), is a well-known stimulator of proangiogenic responses in vascular endothelial cells (ECs), which are mediated through the induction of vascular endothelial growth factor (VEGF). However, the transcriptional events underlying this thrombin-induced VEGF induction and angiogenic response are less well understood at present. As reported here, we conducted detailed promotor activation and signal transduction pathway studies in human microvascular ECs, to decipher the transcription factors and the intracellular signaling events underlying the thrombin and PAR-1-induced endothelial VEGF induction. We found that c-FOS is a key transcription factor controlling thrombin-induced EC VEGF synthesis and angiogenesis. Upon the binding and internalization of its G-protein-coupled PAR-1 receptor, thrombin triggers ERK1/2 signaling and activation of the nuclear AP-1/c-FOS transcription factor complex, which then leads to VEGF transcription, extracellular secretion, and concomitant proangiogenic responses of ECs. In conclusion, exposure of human microvascular ECs to thrombin triggers signaling through the PAR-1-ERK1/2-AP-1/c-FOS axis to control VEGF gene transcription and VEGF-induced angiogenesis. These observations offer a greater understanding of endothelial responses to thromboinflammation, which may help to interpret the results of clinical trials tackling the conditions associated with endothelial injury and thrombosis.


Asunto(s)
Regulación de la Expresión Génica , Neovascularización Fisiológica/genética , Trombina/farmacología , Transcripción Genética/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Microvasos/patología , Neovascularización Fisiológica/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptor PAR-1/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
6.
Front Immunol ; 12: 774052, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858433

RESUMEN

Abstract: Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-α and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-α and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes. Translational Perspective and Graphical Abstract: Systemic microinflammation, altered cytokine signaling, cardiovascular disease, and endothelial maladaptation/dysfunction are common clinical complications in dialysis patients suffering from end-stage renal disease. We studied the impact of novel improved medium-cut-off hemodialysis filters on uremia and endothelial dysfunction. We can show that uremic toxins, especially TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel improved medium-cut-off membranes.


Asunto(s)
Endotelio Vascular/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Uremia/complicaciones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Anciano , Biomarcadores , Biología Computacional , Citocinas/sangre , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Inflamación/diagnóstico , Masculino , Persona de Mediana Edad , Proteómica/métodos , Diálisis Renal/métodos , Transducción de Señal , Uremia/etiología , Uremia/terapia
7.
Stem Cells Dev ; 24(19): 2269-79, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26192403

RESUMEN

While therapeutic mesenchymal stromal/stem cells (MSCs) have usually been obtained from bone marrow, perinatal tissues have emerged as promising new sources of cells for stromal cell therapy. In this study, we present a first safety follow-up on our clinical experience with placenta-derived decidual stromal cells (DSCs), used as supportive immunomodulatory and regenerative therapy for patients with severe complications after allogeneic hematopoietic stem cell transplantation (HSCT). We found that DSCs are smaller, almost half the volume of MSCs, which may favor microvascular passage. DSCs also show different hemocompatibility, with increased triggering of the clotting cascade after exposure to human blood and plasma in vitro. After infusion of DSCs in HSCT patients, we observed a weak activation of the fibrinolytic system, but the other blood activation markers remained stable, excluding major adverse events. Expression profiling identified differential levels of key factors implicated in regulation of hemostasis, such as a lack of prostacyclin synthase and increased tissue factor expression in DSCs, suggesting that these cells have intrinsic blood-activating properties. The stronger triggering of the clotting cascade by DSCs could be antagonized by optimizing the cell graft reconstitution before infusion, for example, by use of low-dose heparin anticoagulant in the cell infusion buffer. We conclude that DSCs are smaller and have stronger hemostatic properties than MSCs, thus triggering stronger activation of the clotting system, which can be antagonized by optimizing the cell graft preparation before infusion. Our results highlight the importance of hemocompatibility safety testing for every novel cell therapy product before clinical use, when applied using systemic delivery.


Asunto(s)
Células de la Médula Ósea/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Adolescente , Adulto , Anticoagulantes/administración & dosificación , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Coagulación Sanguínea/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/genética , Decidua/citología , Decidua/metabolismo , Femenino , Expresión Génica , Enfermedad Injerto contra Huésped/terapia , Heparina/administración & dosificación , Heparina/farmacología , Humanos , Lactante , Recién Nacido , Oxidorreductasas Intramoleculares/genética , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Placenta/citología , Placenta/metabolismo , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tromboplastina/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA