Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 13(8): 807-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24705383

RESUMEN

Self-assembled nanoparticle superlattices-materials made of inorganic cores capped by organic ligands, of varied structures, and held together by diverse binding motifs-exhibit size-dependent properties as well as tunable collective behaviour arising from couplings between their nanoscale constituents. Here, we report the single-crystal X-ray structure of a superlattice made in the high-yield synthesis of Na(4)Ag(44)(p-MBA)(30) nanoparticles, and find with large-scale quantum-mechanical simulations that its atomically precise structure and cohesion derive from hydrogen bonds between bundledp-MBA ligands. We also find that the superlattice's mechanical response to hydrostatic compression is characterized by a molecular-solid-like bulk modulus B(0) = 16.7 GPa, exhibiting anomalous pressure softening and a compression-induced transition to a soft-solid phase. Such a transition involves ligand flexure, which causes gear-like correlated chiral rotation of the nanoparticles. The interplay of compositional diversity, spatial packing efficiency, hydrogen-bond connectivity, and cooperative response in this system exemplifies the melding of the seemingly contrasting paradigms of emergent behaviour 'small is different' and 'more is different'.

2.
Science ; 248(4954): 454-61, 1990 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-17815594

RESUMEN

Molecular dynamics simulations and atomic force microscopy are used to investigate the atomistic mechanisms of adhesion, contact formation, nanoindentation, separation, and fracture that occur when a nickel tip interacts with a gold surface. The theoretically predicted and experimentally measured hysteresis in the force versus tip-to-sample distance relationship, found upon approach and subsequent separation of the tip from the sample, is related to inelastic deformation of the sample surface characterized by adhesion of gold atoms to the nickel tip and formation of a connective neck of atoms. At small tipsample distances, mechanical instability causes the tip and surface to jump-to-contact, which in turn leads to adhesion-induced wetting of the nickel tip by gold atoms. Subsequent indentation of the substrate results in the onset of plastic deformation of the gold surface. The atomic-scale mechanisms underlying the formation and elongation of a connective neck, which forms upon separation, consist of structural transformations involving elastic and yielding stages.

3.
Science ; 267(5205): 1793-5, 1995 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-17775806

RESUMEN

Material structures of reduced dimensions exhibit electrical and mechanical properties different from those in the bulk. Measurements of room-temperature electronic transport in pulled metallic nanowires are presented, demonstrating that the conductance characteristics depend on the length, lateral dimensions, state and degree of disorder, and elongation mechanism of the wire. Conductance during the elongation of short wires (length l approximately 50 angstroms) exhibits periodic quantization steps with characteristic dips, correlating with the order-disorder states of layers of atoms in the wire predicted by molecular dynamics simulations. The resistance R of wires as long as l approximately 400 angstroms exhibits localization characteristics with In R(l) approximately l(2).

4.
J Phys Chem A ; 112(40): 9628-49, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18828572

RESUMEN

The energetics, interfacial properties, instabilities, and fragmentation patterns of electrosprays made from formamide salt solutions are investigated in a mass spectrometric vacuum electrospray experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of 1 V/nm. Mass-to-charge ratios were determined for both positive and negative currents sprayed from NaI-formamide solutions with solute-solvent mole ratios of 1:8.4 and 1:36.9, and from KI-formamide solutions with mole ratios of 1:41 and 1:83. The molecular dynamics simulations were conducted on isolated 10 nm NaI-formamide droplets at mole ratios of 1:8 and 1:16. The droplet was subjected to a uniform electric field with strengths ranging between 0.5 and 1.5 V/nm. Both the experiments and simulations demonstrate a mixed charge emission regime where field-induced desorption of solvated ions and charged droplets occurs. The macroscopic parameters, such as average mass-to-charge ratio and maximum surface-normal field strengths deduced from the simulations are found to be in good agreement with the experimental work and consistent with electrohydrodynamic theory of cone-jets. The observed mass spectrometric Na (+) and I (-) solvated ion distributions are consistent with a thermal evaporation process, and are correctly reproduced by the simulation after incorporation of the different flight times and unimolecular ion dissociation rates in the analysis. Alignment of formamide dipoles and field-induced reorganization of the positive and negative ionic charges in the interfacial region are both found to contribute to the surface-normal field near the points of charge emission. In the simulations the majority of cluster ions are found to be emitted from the tip of the jet rather than from the neck region next to the Taylor cone. This finding is consistent with the experimental energy distributions of the solvated ions which demonstrate that indeed most ions are emitted closer to the jet region, that is, beyond the cone-neck region where ohmic losses occur. This observation is also consistent with continuum electrohydrodynamic predictions of cluster-ion evaporation at surface regions of high curvature and therefore maximum surface electric field strengths, which may be the cone-neck region, the breakup region of the jet (usually near the tip of the jet), or the emitted charged droplets. In the nanoscale jets observed in this study, the regions of highest spatial curvature are at the ends of the jets where nascent drops either are forming or have just detached.

5.
Faraday Discuss ; 125: 1-22; discussion 99-116, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14750661

RESUMEN

We explore, with the use of extensive molecular dynamics simulations, several principal issues pertaining to the energetics of formation of superlattices made through the assembly of passivated nanoclusters, the interactions that underlie the cohesion of such superlattices, and the unique mechanical, thermal and structural properties that they exhibit. Our investigations focus on assemblies made of crystalline gold nanoclusters of variable sizes, passivated by monolayers of alkylthiol molecules. An analytic optimal packing model that correlates in a unified manner several structural characteristics of three-dimensional superlattice assemblies is developed. The model successfully organizes and systematizes a large amount of experimental and simulation data, and it predicts the phase-boundary between different superlattice structural motifs that evolve as a function of the ratio between the chain-length of the extended passivating molecules and the radius of the underlying gold nanocluster. The entropic contribution to the formation free energy of the superlattice assembly is found to be large and of similar magnitude as the potential energy component of the free energy. The major contribution to the cohesive potential energy of the superlattice is shown to originate from van der Waals interactions between molecules that passivate neighboring nanoclusters. The unique mechanical, thermal, thermomechanical, and thermostructural properties of passivated nanocluster assemblies, are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA